The only method to quantify free extracellular levels of drugs in the brain of living animals is microdialysis. However, quantitative microdialysis has been hampered by methodological issues for decades. The problems arise from the need to establish the in vivo recovery for appropriate quantitation. In dealing with these issues the "dynamic no-net-flux" (DNNF) method seemed to be the experimental method of choice. Major disadvantages were, however, the need for a very high degree of bioanalytical precision and accuracy and the need for a large number of animals. Moreover, today we know that the experimental data are not always straightforward. To improve robustness and practicality of quantitative microdialysis sampling we modified the ultraslow microdialysis approach. Ultraslow microdialysis uses very low microdialysis flow rates (<200 nl/min) which increase recovery (both in vivo and in vitro) to over 90%. However, new practical issues arise when attempting to work with these flow rates. The resulting very low volumes and long lag times make this method very impractical for general application. In the modified version, addition of a carrier flow after the dialysis process has been completed, which negates the problems of long lag times and low volumes. The resulting dilution of the dialysis sample concentration can simply be mathematically corrected. In the current study we measured the free brain levels of two CNS compounds using the classic DNNF and the new modified ultraslow dialysis method. Modified ultraslow microdialysis was shown to generate robust data with the use of only small numbers of rats. The method is a promising tool for common straightforward screening of blood-brain barrier penetration of compounds into the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2008.12.010 | DOI Listing |
J Clin Med
December 2024
Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy.
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson's disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring.
View Article and Find Full Text PDFCancer Chemother Pharmacol
December 2024
City of Hope Comprehensive Cancer Center, Department of Medical Oncology and Therapeutics Research, Duarte, CA, USA.
Mol Pharm
November 2024
Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
Pharmacokinetic (PK) elucidation of polymeric micelles delivering anticancer drugs is crucial for accurate antitumor PK-pharmacodynamic (PK-PD) simulations. Particularly, establishing a methodology to quantify the tumor inflow and outflow of anticancer drugs encapsulated in polymeric micelles is an essential challenge. General tumor biodistribution experiments are disadvantageous in that inflow quantification is easy, but outflow quantification is challenging.
View Article and Find Full Text PDFTheranostics
September 2024
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
Ultrasound Med Biol
November 2024
Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
Objective: Targeting single monitoring modalities such as intracranial pressure (ICP) or cerebral perfusion pressure alone has shown to be insufficient in improving outcome after traumatic brain injury (TBI). Multimodality monitoring (MMM) allows for a more complete description of brain function and for individualized management. Transcranial Doppler (TCD) represents the gold standard for continuous cerebral blood flow velocity assessment, but requires high levels skill and time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!