AI Article Synopsis

  • Spinal muscular atrophy (SMA) is a genetic disorder characterized by muscle weakness due to spinal cord degeneration, classified into three types based on age of onset.
  • The study involved 267 SMA patients, revealing that a significant majority had deletions in the SMN1 gene, which is crucial for the disease's development.
  • Most cases showed homozygous deletions, particularly in types I and II, while type III had a lower deletion rate, indicating potential differences in genetic impacts across SMA types.

Article Abstract

Objective: Spinal muscular atrophy (SMA) is an autosomal recessive disorder that results in symmetrical muscle weakness and wasting due to degeneration of the anterior horns of the spinal cord. The clinical picture of SMA is variable and childhood SMA has been classified into 3 types on the basis of the age of onset and clinical course. The survival motor neuron (SMN) gene was mapped to chromosome 5q13. The SMN1 gene has been recognized to be responsible for SMA because of homozygous deletions or intragenic mutations in SMN1 results in childhood onset of SMA. The main objective of this study was to determine the deletion frequency of SMN1 gene and to apply gene analysis in children patients with SMA.

Methods: The SMA patients were diagnosed and clinically typed according to the international diagnostic criteria, following up cases, and gene analysis. The PCR enzyme assay was used to detect the homozygous deletion of SMN1 gene in SMA patients. A dosage assay that combined multiplexed allele-specific PCR and DHPLC was used to determine the copy numbers of the SMN1 and SMN2 and detect SMN1 heterozygous deletion.

Results: (1) A total of 267 patients with SMA were diagnosed from 338 suspicious cases and 143, 82, and 42 cases were typed as types I, II, and III, with the percentages of 53.6% (143/267), 30.7% (82/267) and 15.7% (42/267), respectively. (2) Results of the present study showed that 68.5% (183/267) of SMA patients had homozygous deletions of exons 7 and 8 of SMN1 gene and 12.7% (34/267) had homozygous deletions of only exon 7 of SMN1 gene. The SMN1 heterozygous deletion was confirmed in 12.4% (33/267) of SMA patients. Non-deletion SMA patients accounted for 6.4%(17/267). The homozygous deletions of only exon 8 of SMN1 gene could not be detected. (3) The rates of homozygous or heterozygous deletion in types I and II were very similar. The rate of homozygous deletion was lower in type III than that in type I or II and rate of heterozygous deletion of type III was higher than that in types I or II.

Conclusion: (1) The frequency and pattern of deletions in the Chinese children patients with SMA are significantly different from that observed in Caucasians populations. Further gene characterization and subtle mutations within the SMN1 gene need to be studied in order to define the molecular basis of SMA in the Chinese population. (2) The gene diagnosis is a special and non invasive method as compared with other methods. A total of 80% patients can be diagnosed through the analysis of the homozygous deletion of SMN1 gene. (3) The clinical diagnosis and gene detection need to be studied in future for the SMA patients with type III.

Download full-text PDF

Source

Publication Analysis

Top Keywords

smn1 gene
32
sma patients
24
homozygous deletions
16
gene
15
sma
14
children patients
12
smn1
12
homozygous deletion
12
heterozygous deletion
12
type iii
12

Similar Publications

Background:  Spinal muscular atrophy linked to chromosome 5q (SMA-5q) is a neurodegenerative disorder caused by mutations in the gene.

Objective:  To describe the key demographic, clinical and genetic characteristics, as well as natural history data of patients with SMA-5q.

Methods:  Up to January 2022, 706 patients with confirmed genetic diagnosis of SMA-5q, or their parents, completed a self-reported questionnaire on natural history, genetic characteristics, drug treatments, and multidisciplinary care.

View Article and Find Full Text PDF

[Natural history of spinal muscular atrophy type I].

Zh Nevrol Psikhiatr Im S S Korsakova

December 2024

JSC BIOCAD, St. Petersburg, Russia.

Spinal muscular atrophy (SMA) is a group of genetically heterogeneous neuromuscular diseases characterized by the progressive loss of motor neurons in the anterior horns of the spinal cord. The prevalence of SMA is approximately 1 in 10.000 live births.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a rare autosomal recessive genetic disease caused by Survival Motor Protein 1 () gene mutations. Classically divided into three types, SMA is characterized by hypotonia, weakness, and tongue fasciculation in the first 6 months of life in type 1, inability to walk and limb weakness in type 2, and failure to run with proximal weakness in type 3 SMA. With the advent of newborn screening, treating presymptomatic patients with Onasemnogene abeparvovec (OA) is the treatment of choice in some centers worldwide.

View Article and Find Full Text PDF

Diagnosing missed cases of spinal muscular atrophy in genome, exome, and panel sequencing datasets.

Genet Med

December 2024

Program in Medical and Population Genetics, Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:

Purpose: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome or panel sequencing datasets aligned to a GRCh37, GRCh38, or T2T reference genome.

Methods: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!