Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.22429DOI Listing

Publication Analysis

Top Keywords

parkinsonism impulse
4
impulse control
4
control disorder
4
disorder presentation
4
presentation progranulin
4
progranulin gene
4
gene mutation
4
parkinsonism
1
control
1
disorder
1

Similar Publications

Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by a range of motor and non-motor symptoms (NMSs) that significantly impact patients' quality of life. This review aims to synthesize the current literature on the application of brain stimulation techniques, including non-invasive methods such as transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), transcranial focused ultrasound stimulation (tFUS), and transcutaneous vagus nerve stimulation (tVNS), as well as invasive approaches like deep brain stimulation (DBS). We explore the efficacy and safety profiles of these techniques in alleviating both motor impairments, such as bradykinesia and rigidity, and non-motor symptoms, including cognitive decline, depression, and impulse control disorders.

View Article and Find Full Text PDF

Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.

PLoS Biol

January 2025

Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.

The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.

View Article and Find Full Text PDF

Background: Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of Parkinson's disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes after STN-DBS.

Case Presentation: 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson's Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale.

View Article and Find Full Text PDF

Background: Impaired impulse control is often seen in Parkinson's disease (PD) patients using dopamine agonists.

Methods: We performed a therapeutic drug monitoring study of 100 PD patients using ropinirole or pramipexole extended release. Three blood samples were collected on the same day.

View Article and Find Full Text PDF

Impulse control disorders in Parkinson's disease: What's new?

J Neurol

January 2025

Parkinson's Disease Research Clinic, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.

Impulse Control Disorders (ICDs) are increasingly recognized as a significant non-motor complication in Parkinson's disease (PD), impacting patients and their caregivers. ICDs in PD are primarily associated with dopaminergic treatments, particularly dopamine agonists, though not all patients develop these disorders, indicating a role for genetic and other clinical factors. Studies over the past few years suggest that the mesocorticolimbic reward system, a core neural substrate for impulsivity, is a key contributor to ICDs in PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!