As humans age, cognitive performance decreases differentially across individuals. This age-related decline in otherwise healthy individuals is likely due to the interaction of multiple factors including genetics and environment. We hypothesized that altered spatial memory performance in genetically similar mice could be in part due to differential gene expression patterns in the hippocampus. To investigate this we utilized Morris water maze (MWM) testing in a group of young (3 months) and aged (24 months) C57BL/J male mice. Two sub-groups were identified in the aged animals; one in which MWM performance was not significantly different when compared to the young animals (aged-unimpaired; "AU") and one in which performance was significantly different by 1.5 standard deviations from the mean (aged-impaired; "AI"). One week after testing was completed the entire hippocampus was collected from six each of AU, AI and young mice and their gene expression profiles were compared using Affymetrix microarrays. Benjamini and Hochberg FDR correction at p<0.05 identified 18 genes differentially expressed between the AI and AU mice. The correlation between behavioral deficits and gene expression patterning allows a better understanding of how altered gene expression in the hippocampus contributes to accelerated age-related cognitive decline and delineates between gene expression changes associated with normal aging vs. memory performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2008.12.039DOI Listing

Publication Analysis

Top Keywords

gene expression
12
hippocampal gene
4
expression changes
4
changes age-related
4
age-related cognitive
4
cognitive decline
4
decline humans
4
humans age
4
age cognitive
4
performance
4

Similar Publications

Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.

View Article and Find Full Text PDF

Transcription factor prediction using protein 3D secondary structures.

Bioinformatics

January 2025

Institute for Computational Systems Biology, Universität Hamburg, Hamburg, 22761, Germany.

Motivation: Transcription factors (TFs) are DNA-binding proteins that regulate gene expression. Traditional methods predict a protein as a TF if the protein contains any DNA-binding domains (DBDs) of known TFs. However, this approach fails to identify a novel TF that does not contain any known DBDs.

View Article and Find Full Text PDF

Bayesian Gene Set Benchmark Dose Estimation for "omic" responses.

Bioinformatics

January 2025

Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, North Carolina 27709, United States.

Motivation: Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets.

View Article and Find Full Text PDF

Eczema and dermatitis are common inflammatory skin conditions with significant morbidity. Identifying drug-targetable genes can facilitate the development of effective treatments. This study analyzed data obtained by meta-analysis of 2 genome-wide association studies on eczema/dermatitis (57,311 cases and 896,779 controls, European ancestry).

View Article and Find Full Text PDF

miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients.

Invest Ophthalmol Vis Sci

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.

Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.

Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!