The synthesis and properties of (5')TA(3')-t5 (8a) and (5')CG(3')-t5 (8b) conjugates, in which the self-complementary dinucleotides TA and CG are covalently bound to the central ring of alpha-quinquethiophene (t5), are described. According to molecular mechanics calculations, the preferred conformation of both 8a and 8b is that with the dinucleotide folded over the planar t5 backbone, with the nucleobases facing t5 at stacking distance. The calculations show that the aggregation process of 8a and 8b is driven by a mix of nucleobase-thiophene interactions, hydrogen bonding between nucleobases (non Watson-Crick (W&C) in TA, and W&C in CG), van der Waals, and electrostatic interactions. While 8b is scarcely soluble in any solvents, 8a is soluble in water, indicating that the aggregates of the former are more stable than those of the latter. Microfluidic-induced self-assembly studies of 8a showed the formation of lamellar, spherulitic, and dendritic supramolecular structures, depending on the concentration and solvent evaporation time. The self-assembled structures displayed micrometer dimensions in the xy plane of the substrate and nanometer dimensions in the z direction. Spatially resolved confocal microscopy and spectroscopy showed that the aggregates were characterized by intense fluorescence emission. Cast films of 8a from water solutions showed chirality transfer from the dinucleotide to t5. The hole mobility of the cast films of 8a was estimated using a two-electrode device under high vacuum and found to be up to two orders of magnitude greater than those previously measured for dinucleotide-quarterthiophene conjugates under the same experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200801684 | DOI Listing |
Nat Commun
January 2025
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Nanoscale
January 2025
CBMN, CNRS, UMR 5248, University of Bordeaux, 33600 Pessac, France.
Cast films of racemic helicene derivatives adsorbed onto the surface of nanometric silica helices with controlled handedness exhibited distinct CD signals, whereas no CD signal was observed in the absence of silica nanohelices. These CD signals originate from the helical supramolecular assemblies formed by the racemic mixture of helicenes, with no evidence of enantiospecific adsorption. Interestingly, when enantiomerically pure forms of these helicenes were drop-cast onto the silica helices, different CD spectra were observed depending on the combination of the helicenes' handedness with that of the silica nanohelices.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.
View Article and Find Full Text PDFNanoscale
December 2024
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule.
View Article and Find Full Text PDFBiomater Sci
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
Pathogenic bacterial growth at wound sites, particularly , poses a serious threat during trauma. Delayed treatment can lead to increased inflammation and severe tissue damage. In this study, a chitosan cross-linked polycationic peptide-conjugated graphene-silver (CGrAP) nanocomposite hydrogel film was developed as an antibacterial wound dressing to treat infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!