mTOR complex 1 (mTORC1) plays a central role in cell growth and cellular responses to metabolic stress. Although mTORC1 has been shown to be activated after Toll-like receptor (TLR)-4 engagement, there is little information concerning the role that mTORC1 may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of rapamycin-induced inhibition of mTORC1 on TLR2- and TLR4-induced neutrophil activation. mTORC1 was dose- and time-dependently activated in murine bone marrow neutrophils cultured with the TLR4 ligand, LPS, or the TLR2 ligand, Pam(3) Cys-Ser-(Lys)(4) (PAM). Incubation of PAM- or LPS-stimulated neutrophils with rapamycin inhibited expression of TNF-alpha and IL-6, but not IkappaB-alpha degradation or nuclear translocation of NF-kappaB. Exposure of PAM or LPS-stimulated neutrophils to rapamycin inhibited phosphorylation of serine 276 in the NF-kappaB p65 subunit, a phosphorylation event required for optimal transcriptional activity of NF-kappaB. Rapamycin pretreatment inhibited PAM- or LPS-induced mTORC1 activation in the lungs. Administration of rapamycin also decreased the severity of lung injury after intratracheal LPS or PAM administration, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results indicate that mTORC1 activation is essential in TLR2- and TLR4-induced neutrophil activation, as well as in the development and severity of acute lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715911PMC
http://dx.doi.org/10.1165/rcmb.2008-0290OCDOI Listing

Publication Analysis

Top Keywords

lung injury
16
neutrophil activation
12
acute lung
12
toll-like receptor
8
tlr2- tlr4-induced
8
tlr4-induced neutrophil
8
lps-stimulated neutrophils
8
neutrophils rapamycin
8
rapamycin inhibited
8
tnf-alpha il-6
8

Similar Publications

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

The pathogenesis and management of heatstroke and heatstroke-induced lung injury.

Burns Trauma

January 2025

Treatment Center for Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510063, Guangdong, China.

In the past two decades, record-breaking heat waves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a life-threatening systemic condition characterized by a core body temperature >40°C and the subsequent development of multiple organ dysfunction syndrome. Lung injury is a well-documented complication of heatstroke and is usually the secondary cause of patient death.

View Article and Find Full Text PDF

Background: Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined.

View Article and Find Full Text PDF

Key Clinical Message: Although the symptoms of accidental chlorine inhalation are typically mild, severe exposure can result in acute respiratory distress syndrome (ARDS). We present a case of pediatric ARDS due to chlorine exposure in which lung lavage and exogenous surfactant were successful in avoiding more invasive and costly treatments.

Abstract: Chlorine inhalation as a result of swimming pool chlorination accidents is relatively common.

View Article and Find Full Text PDF

The ethanolic extract of Rhaphidophora peepla prevents inflammation by inhibiting the activation of Syk/AKT/NF-κB and TAK1/MAPK/AP-1.

Phytomedicine

January 2025

Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!