Glucocorticoids (GCs) exert profound effects on a variety of physiological processes, including adaptation to stress, metabolism, immunity, and neuronal development. Cellular responsiveness to GCs depends on numerous factors, including the amount of the glucocorticoid receptor (GR) protein. We tested the hypothesis that micro-RNAs (miRs), a recently discovered group of noncoding RNAs involved in mRNA translation, might control GR activity by reducing GR protein levels in neuronal tissues. We tested a panel of five miRs consisting of 124aa, 328, 524, 22, and 18. We found that miRs 18 and 124a reduced GR-mediated events in addition to decreasing GR protein levels. miR reporter assays revealed binding of miR-124a to the 3' untranslated region of GR. In correspondence, the activation of the GR-responsive gene glucocorticoid-induced leucine zipper was strongly impaired by miR-124a and -18 overexpression. Although miR-18 is expressed widely throughout the body, expression of miR-124a is restricted to the brain. Endogenous miR-124a up-regulation during neuronal differentiation of P19 cells was associated with a decreasing amount of GR protein levels and reduced activity of luciferase reporter constructs bearing GR 3' untranslated regions. Furthermore, we show that miR-124a expression varies over time during the stress hyporesponsive period, a neonatal period when GC signaling is modulated. Our findings demonstrate a potential role for miRs in the regulation of cell type-specific responsiveness to GCs, as may occur during critical periods of neuronal development. Ultimately, our results may provide a better understanding of the etiology of stress-related diseases as well as the efficacy of GC therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2008-1335 | DOI Listing |
J Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFHum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFInflamm Res
January 2025
Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil.
Introduction: The present study aimed at evaluating the systemic profile and network connectivity of immune mediators during acute chikungunya fever (CHIKF) according to days of symptoms onset and ageing.
Methods: A total of 161 volunteers (76 CHIKF patients and 85 non-infected healthy controls) were enrolled.
Results And Discussion: Data demonstrated that a massive and polyfunctional storm of serum immune mediators was observed in CHIKF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!