The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.90985.2008 | DOI Listing |
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFSkeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.
View Article and Find Full Text PDFExp Physiol
January 2025
Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium.
Adiponectin (ApN) is a hormone with potent effects on various tissues. We previously demonstrated its ability to counteract Duchenne muscular dystrophy (DMD), a severe muscle disorder. However, its therapeutic use is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!