Background: Left ventricular (LV) twist dynamics play an important role in LV systolic and diastolic function. The aim of this preliminary study was to investigate LV twist dynamics in a canine model of reversible congestive heart failure (CHF).

Methods: Pacing systems were implanted in adult dogs, and continuous chronic right ventricular pacing (230-250 beats/min) was applied until CHF induction. Pacing was then stopped to allow the heart to recover. Echocardiography and LV catheterization were performed at baseline, during CHF while pacing was temporarily switched off, and during recovery. LV twist was computed as the difference between apical and basal rotation measured using 2-dimensional speckle tracking. Torsion was further calculated as LV twist divided by the LV long axis. The untwisting rate was computed as the peak diastolic time derivative of twist.

Results: In 6 dogs that completed the study, we found that CHF developed after 2 to 4 weeks of pacing, with LV end-diastolic volume, end-systolic volume, end-diastolic pressure, and the time constant of relaxation during isovolumic relaxation period (tau) all increasing significantly compared with baseline and recovering to normal levels 2 to 4 weeks after pacing was stopped. LV twist, torsion, and untwisting rate decreased significantly with CHF compared with baseline and improved during recovery from CHF.

Conclusion: LV twist dynamics reflect pacing-induced CHF and its reversal as assessed by echocardiographic speckle tracking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650082PMC
http://dx.doi.org/10.1016/j.echo.2008.10.015DOI Listing

Publication Analysis

Top Keywords

twist dynamics
12
left ventricular
8
ventricular twist
8
canine model
8
model reversible
8
reversible congestive
8
congestive heart
8
heart failure
8
pacing stopped
8
speckle tracking
8

Similar Publications

Photostimulus-responsive fluorescent materials are promising for anticounterfeiting and UV printing due to rapid response and simple preparation. In this paper, we propose a novel strategy to prepare photostimulus-responsive materials SP@HOF-olefin by integrating the photochromic molecule spiropyran (SP) with postsynthetic modified hydrogen-bonded organic frameworks (HOF-olefin). Compared to SP@HOF, the composites SP@HOF-olefin exhibit enhanced photochromic properties, such as a fast response speed, pronounced color contrast, and exceptional fatigue resistance.

View Article and Find Full Text PDF

Cells undergo significant epigenetic and phenotypic change during the epithelial-to-mesenchymal transition (EMT), a process observed in development, wound healing, and cancer metastasis. EMT confers several advantageous characteristics, including enhanced migration and invasion, resistance to cell death, and altered metabolism. In disease, these adaptations could be leveraged as therapeutic targets.

View Article and Find Full Text PDF

Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity.

View Article and Find Full Text PDF

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!