A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stem cell sources to treat diabetes. | LitMetric

Stem cell sources to treat diabetes.

J Cell Biochem

Department of Urology and Wake Forest, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.

Published: March 2009

We review progress towards the goal of utilizing stem cells as a source of engineered pancreatic beta-cells for therapy of diabetes. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental cues have generated beta-like cells that produce high levels of insulin, albeit at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem (iPS) cells also can yield insulin-producing cells following similar approaches. An important recent report shows that when transplanted into mice, human ES-derived cells with a phenotype corresponding to pancreatic endoderm matured to yield cells capable of maintaining near-normal regulation of blood sugar [Kroon et al., 2008]. Major hurdles that must be overcome to enable the broad clinical translation of these advances include teratoma formation by ES and iPS cells, and the need for immunosuppressive drugs. Classes of stem cells that can be expanded extensively in culture but do not form teratomas, such as amniotic fluid-derived stem cells and hepatic stem cells, offer possible alternatives for the production of beta-like cells, but further evidence is required to document this potential. Generation of autologous iPS cells should prevent transplant rejection, but may prove prohibitively expensive. Banking strategies to identify small numbers of stem cell lines homozygous for major histocompatibility loci have been proposed to enable beneficial genetic matching that would decrease the need for immunosuppression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.22000DOI Listing

Publication Analysis

Top Keywords

stem cells
20
cells
13
ips cells
12
stem
8
stem cell
8
beta-like cells
8
cell sources
4
sources treat
4
treat diabetes
4
diabetes review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!