The cellulose synthase-like (ZmCSL) gene family of maize was annotated and its expression studied in the maize mesocotyl. A total of 28 full-length CSL genes and another 13 partial sequences were annotated; four are predicted to be pseudogenes. Maize has all of the CSL subfamilies that are present in rice, but the CSLC subfamily is expanded from 6 in rice to 12 in maize, and the CSLH subfamily might be reduced from 3 to 1. Unlike rice, maize has a gene in the CSLG subfamily, based on its sequence similarity to two genes annotated as CSLG in poplar. Light regulation of glycan synthase enzyme activities and CSL gene expression were analyzed in the mesocotyl. A Golgi-localized glucan synthase activity is reduced by ~50% 12 h after exposure to light. beta-1,4-Mannan synthase activity is reduced even more strongly (>85%), whereas beta-1,4-xylan synthase, callose synthase, and latent IDPase activity respond only slightly, if at all, to light. At least 17 of the CSL genes (42%) are expressed in the mesocotyl, of which four are up-regulated at least twofold, seven are down-regulated at least twofold, and six are not affected by light. The results contribute to our understanding of the structure of the CSL gene family in an important food and biofuel plant, show that a large percentage of the CSL genes are expressed in the specialized tissues of the mesocotyl, and demonstrate that members of the CSL gene family are differentially subject to photobiological regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-008-0881-3 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFIntern Emerg Med
January 2025
Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.
Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!