The transient behaviors of the dipole coupling with surface plasmon (SP) features in an Ag/dielectric-interface grating structure in order to understand the characteristics of those dipole-coupling features are demonstrated. In particular, the major decay mechanisms of those coupling features can be identified. For comparison, the time-resolved behaviors of the resonant surface plasmon polariton (SPP) coupling feature on a flat interface are also illustrated. Among the three major grating-induced SP-dipole coupling features, two of them are identified to be localized surface plasmons (LSPs). The third one is a grating-assisted SPP, which shows two decay components, corresponding to the first stage of SPP in-plane propagation and the second stage of coupling system decay. In all the dipole coupling features, metal dissipation can dominate the energy relaxation process, depending on the assumption of damping factor. All the dissipation rates are proportional to the assumed damping factor in the Drude model of the metal. The dissipation rates of the LSP and resonant SPP features are about the same as the damping rate, implying their local electron oscillation natures. The dissipation rate of the grating-assisted SSP feature is consistent with theoretical calculation. In the LSP features under study, dielectric-side emission is prominent. The coupled energy in the grating-assisted SPP feature can be efficiently stored in the coupling system due to its low emission efficiency and effective energy confinement through grating diffraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.17.000104 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.
Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Introduction: The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon.
Methods: We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination.
Results: We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3.
Acc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFNat Chem
January 2025
Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, 91405, Orsay, France.
The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!