The ubiquitin-proteasome system has a central role in the degradation of intracellular proteins and regulates a variety of functions. Viruses belonging to several different families utilize or modulate the system for their advantage. Here we showed that the proteasome inhibitors MG132 and epoxomicin blocked a postentry step in vaccinia virus (VACV) replication. When proteasome inhibitors were added after virus attachment, early gene expression was prolonged and the expression of intermediate and late genes was almost undetectable. By varying the time of the removal and addition of MG132, the adverse effect of the proteasome inhibitors was narrowly focused on events occurring 2 to 4 h after infection, the time of the onset of viral DNA synthesis. Further analyses confirmed that genome replication was inhibited by both MG132 and epoxomicin, which would account for the effect on intermediate and late gene expression. The virus-induced replication of a transfected plasmid was also inhibited, indicating that the block was not at the step of viral DNA uncoating. UBEI-41, an inhibitor of the ubiquitin-activating enzyme E1, also prevented late gene expression, supporting the role of the ubiquitin-proteasome system in VACV replication. Neither the overexpression of ubiquitin nor the addition of an autophagy inhibitor was able to counter the inhibitory effects of MG132. Further studies of the role of the ubiquitin-proteasome system for VACV replication may provide new insights into virus-host interactions and suggest potential antipoxviral drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648259 | PMC |
http://dx.doi.org/10.1128/JVI.01986-08 | DOI Listing |
Expert Opin Ther Pat
January 2025
Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
Introduction: The von Hippel-Lindau (VHL) E3 ubiquitin ligase has seen extensive research due to its involvement in the ubiquitin proteasome system and role as a tumor suppressor within the hypoxia signaling pathway. VHL has become an attractive target for proteolysis targeting chimeras (PROTACs), bifunctional molecules that can induce degradation of neo-substrate proteins. The development of VHL inhibitors and PROTACs has seen rapid development since disclosure of the first non-peptidic VHL ligand (2012).
View Article and Find Full Text PDFBMC Infect Dis
January 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
Influenza-related acute lung injury is a life-threatening condition primarily caused by uncontrolled replication of the influenza virus and intense proinflammatory responses. Cereblon (CRBN) is a protein known for its role in the ubiquitin-proteasome system and as a target of the drug thalidomide. However, the function of CRBN in influenza virus infection remains poorly understood.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase 1 (IDO1) is a potently immunosuppressive protein that inhibits antitumor immunity through both tryptophan metabolism and non-enzymatic functions. Pharmacological therapies targeting IDO1 enzyme activity have generally failed to improve the overall survival of patients with cancer. Developing new therapeutic agents that are capable of neutralizing both enzyme-and non-enzyme-derived immunosuppressive IDO1 effects is therefore of high interest.
View Article and Find Full Text PDFBiol Chem
January 2025
Cell Biology, 26562 RPTU University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany.
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!