Secondary hyperparathyroidism is characterized by increased parathyroid hormone (PTH) mRNA stability that leads to increased PTH mRNA and serum PTH levels. PTH gene expression is reduced by the calcimimetic R568 and the oral phosphorus binder lanthanum carbonate (La). Changes in PTH mRNA stability are regulated by the binding of trans-acting stabilizing and destabilizing factors to a defined cis element in the PTH mRNA 3'-untranslated region (UTR). Adenosine-uridine (AU)-binding factor 1 (AUF1) is a PTH mRNA-stabilizing protein, and K-homology splicing regulatory protein (KSRP) is a destabilizing protein that targets mRNAs, including PTH mRNA, to degradation by the ribonuclease complex exosome. We now show that KSRP-PTH mRNA binding is decreased in parathyroids from rats with adenine-induced chronic kidney disease (CKD) where PTH mRNA is more stable. KSRP-PTH mRNA binding is increased by treatment with both R568 and La, correlating with decreased PTH gene expression. In vitro degradation assays using transcripts for PTH mRNA and rat parathyroid extracts reproduce the differences in mRNA stability in vivo. Accordingly, PTH mRNA is destabilized in vitro by parathyroid extracts from CKD rats treated with R568 or La compared with parathyroid extracts from untreated CKD rats. This destabilizing effect of R568 and La is dependent on KSRP and the PTH mRNA 3'-UTR. Therefore, the calcimimetic R568 and correction of serum phosphorus by La determine PTH mRNA stability through KSRP-mediated recruitment of a degradation complex to the PTH mRNA, thereby decreasing PTH expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.90625.2008 | DOI Listing |
JBMR Plus
January 2025
Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States.
Renal osteodystrophy (ROD) leads to increased fractures, potentially due to underlying low bone turnover in chronic kidney disease (CKD). We hypothesized that indoxyl sulfate (IS), a circulating toxin elevated in CKD and a ligand for the aryl hydrocarbon receptor (AhR), may target the osteocytes leading to bone cell uncoupling in ROD. The IDG-SW3 osteocytes were cultured for 14 days (early) and 35 days (mature osteocytes) and incubated with 500 μM of IS after dose finding studies to confirm AhR activation.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA.
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is highly prevalent with major risk of progression to Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Hepatocellular Carcinoma (HCC). Recently, osteoporosis and bone fracture have emerged as sexually-dimorphic comorbidities of MASLD yet the mechanisms of this bone loss are unknown. Herein, we address these knowledge gaps using DIAMOND mice which develop MASLD, MASH, and HCC via Western diet exposure.
View Article and Find Full Text PDFEndocrine
November 2024
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
J Headache Pain
November 2024
Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
Background: Post-traumatic headache (PTH) is a common comorbid symptom affecting at least one-third of patients with mild traumatic brain injury (mTBI). While neuroinflammation is known to contribute to the development of PTH, the cellular mechanisms in the trigeminal system crucial for understanding the pathogenesis of PTH remain unclear.
Methods: A non-invasive repetitive mTBI (4 times with a 24-h interval) was induced in male mice and effect of mTBI was tested on either bregma or pre-bregma position on the head.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!