MepR is a multidrug binding transcription regulator that represses expression of the Staphylococcus aureus multidrug efflux pump gene, mepA, as well as its own gene. MepR is induced by multiple cationic toxins, which are also substrates of MepA. In order to understand the gene regulatory and drug-binding mechanisms of MepR, we carried out biochemical, in vivo and structural studies. The 2.40 A resolution structure of drug-free MepR reveals the most open MarR family protein conformation to date, which will require a huge conformational change to bind cognate DNA. DNA-binding data show that MepR uses a dual regulatory binding mode as the repressor binds the mepA operator as a dimer of dimers, but binds the mepR operator as a single dimer. Alignment of the six half sites reveals the consensus MepR binding site, 5'-GTTAGAT-3'. 'Drug' binding studies show that MepR binds to ethidium and DAPI with comparable affinities (K(d) = 2.6 and 4.5 microM, respectively), but with significantly lower affinity to the larger rhodamine 6G (K(d) = 62.6 microM). Mapping clinically relevant or in vitro selected MepR mutants onto the MepR structure suggests that their defective repressor phenotypes are due to structural and allosteric defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651776 | PMC |
http://dx.doi.org/10.1093/nar/gkn1046 | DOI Listing |
J Environ Manage
December 2024
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems.
View Article and Find Full Text PDFComput Biol Med
September 2024
Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria; Department of Science, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
Multidrug-resistant (MDR) Staphylococcus aureus infections significantly threaten global health. With rising resistance to current antibiotics and limited solutions, the urgent discovery of new, effective, and affordable antibacterials with low toxicity is imperative to combat diverse MDR S. aureus strains.
View Article and Find Full Text PDFEntropy (Basel)
December 2023
Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
A postulate that relates global warming to higher entropy generation rate demand in the tropospheric is offered and tested. This article introduces a low-complexity model to calculate the entropy generation rate required in the troposphere. The entropy generation rate per unit volume is noted to be proportional to the square of the Earth's average surface temperature for a given positive rate of surface warming.
View Article and Find Full Text PDFMicrobiol Spectr
August 2023
Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
Tigecycline is an important antibacterial drug for treating infection by clinical multidrug-resistant bacteria, and tigecycline-resistant Staphylococcus aureus (TRSA) has been increasingly reported in recent years. Notably, only and are associated with the tigecycline resistance of S. aureus.
View Article and Find Full Text PDFInorg Chem
July 2023
Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
The successful management and safe disposal of high-level nuclear waste necessitate the efficient separation of actinides (An) from lanthanides (Ln), which has emerged as a crucial prerequisite. Mixed donor ligands incorporating both soft and hard donor atoms have garnered interest in the field of An/Ln separation and purification. One such example is nitrilotriacetamide (NTAamide) derivatives, which have demonstrated selectivity in extracting minor actinide Am(III) ions over Eu(III) ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!