Raltegravir (MK-0518) is the first integrase (IN) inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses resistant to other antiretroviral compounds. Virological failure of Raltegravir treatment is associated with mutations in the IN gene following two main distinct genetic pathways involving either the N155 or Q148 residue. Importantly, in most cases, an additional mutation at the position G140 is associated with the Q148 pathway. Here, we investigated the viral DNA kinetics for mutants identified in Raltegravir-resistant patients. We found that (i) integration is impaired for Q148H when compared with the wild-type, G140S and G140S/Q148H mutants; and (ii) the N155H and G140S mutations confer lower levels of resistance than the Q148H mutation. We also characterized the corresponding recombinant INs properties. Enzymatic performances closely parallel ex vivo studies. The Q148H mutation 'freezes' IN into a catalytically inactive state. By contrast, the conformational transition converting the inactive form into an active form is rescued by the G140S/Q148H double mutation. In conclusion, the Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G140S/Q148H context. Altogether, these results account for the predominance of G140S/Q148H mutants in clinical trials using Raltegravir.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651800 | PMC |
http://dx.doi.org/10.1093/nar/gkn1050 | DOI Listing |
Viruses
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.
View Article and Find Full Text PDFPathogens
January 2025
Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC 20005, USA.
Real-world data on HIV drug resistance (HIVDR) after transitioning to tenofovir disoproxil fumarate/lamivudine/dolutegravir (TLD) are limited. We assessed HIVDR rates and patterns in clients with virological failure (VF) after switching from an NNRTI-based regimen to TLD. A cross-sectional study was conducted in Gaza, Mozambique (August 2021-February 2022), including adults on first-line ART for ≥12 months who transitioned to TLD and had unsuppressed viral load (VL) ≥ 1000 copies/mL six months post-transition.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Clinical Virology, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
Objectives: International guidelines recommend integrase strand-transfer inhibitor (INSTI)-based regimens as initial and switch therapy in people with HIV. As novel INSTIs become available, understanding how emergence of resistance at virological failures and seroconversions affects subsequent treatment options is needed. For the latest approved INSTI, cabotegravir, resistance patterns comprising Q148K/R, N155H, R263K, G118R, E138A/K and G140A/S (alone or in combination) have been documented in virological failures and seroconversions.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
RCMI Center for Research Resources, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico.
Viruses
July 2024
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.
The WHO currently recommends dolutegravir (DTG)-based ART for persons living with HIV infection in resource-limited-settings (RLS). To expand access to testing for HIV drug resistance (DR) to DTG in RLS, we developed probes for use in the oligonucleotide ligation assay (OLA)-Simple, a near-point of care HIV DR kit. Genotypic data from clinical trials and case reports were used to determine the mutations in HIV-1 integrase critical to identifying individuals with DTG-resistance at virologic failure of DTG-based ART.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!