Ultrafast FRET in a room temperature ionic liquid microemulsion: a femtosecond excitation wavelength dependence study.

J Phys Chem A

Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India.

Published: April 2009

Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in a room temperature ionic liquid (RTIL) microemulsion by picosecond and femtosecond emission spectroscopy. The microemulsion is comprised of the RTIL 1-pentyl-3-methylimidazolium tetraflouroborate, [pmim][BF4], in TX-100/ benzene. We have studied the microemulsion with and without water. The time constants of FRET were obtained from the risetime of the acceptor (R6G) emission. In the RTIL microemulsion, FRET occurs on multiple time scales: 1, 250, and 3900 ps. In water containing RTIL microemulsion, the rise components are 1.5, 250, and 3900 ps. The 1 and 1.5 ps components are assigned to FRET at a close contact of donor and acceptor (RDA approximately 12 A). This occurs within the highly polar (RTIL/water) pool of the microemulsion. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (1 ps) increases from 4% to 100% in the RTIL microemulsion and 12% to 100% in the water containing RTIL microemulsion. It is suggested that at lambdaex = 435 nm, mainly the highly polar RTIL pool is probed where FRET is very fast due to the close proximity of the donor and the acceptor. The very long 3900 ps (RDA approximately 45 A) component may arise from FRET from a donor in the outer periphery of the microemulsion to an acceptor in the polar RTIL pool. The 250 ps component (RDA approximately 29 A) is assigned to FRET from a donor inside the surfactant chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp808777wDOI Listing

Publication Analysis

Top Keywords

rtil microemulsion
20
microemulsion
10
room temperature
8
temperature ionic
8
ionic liquid
8
excitation wavelength
8
fret
8
rtil
8
250 3900
8
water rtil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!