Slugs are serious pests of oilseed rape (canola) and wheat with most damage occurring just after sowing and seedling emergence. As an alternative to the use of bait pellets, molluscicidal seed treatments have been shown to protect seeds and seedlings from slug damage in laboratory and semi-field experiments. However, protection offered to plants in field trials was diminished and shortlived in comparison with laboratory experiments. To determine why field efficacy was reduced, we grew seedlings under a range of environmental conditions, with appropriate controls, that simulated differences between laboratory and field experiments. We then measured the metaldehyde content of plant seedlings using a previously unpublished methodology described herein, which, unlike previous methods, did not first depolymerize the metaldehyde to acetaldehyde. We confirmed that naturally abundant plant-derived acetaldehyde could not interfere with our measurements of metaldehyde, even if depolymerization took place within the column. Our data suggest that reduced field efficacy results from microbial breakdown and/or loss of active ingredient caused by percolating soil water. Once the seedlings had emerged, neither volatalization nor simulated rainwater reduced the metaldehyde content of seedlings. Our findings will help develop superior seed treatment formulations to overcome these constraints.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf060231aDOI Listing

Publication Analysis

Top Keywords

seed treatments
8
field efficacy
8
metaldehyde content
8
metaldehyde
5
field
5
seedlings
5
identification environmental
4
environmental factors
4
factors limiting
4
limiting plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!