Allelic specific gene expression (ASGE) appears to be an important factor in human phenotypic variability and as a consequence, for the development of complex traits and diseases. In order to study ASGE across the human genome, we have performed a study in which genotyping was coupled with an analysis of ASGE by screening 11,500 SNPs using the Mapping 10 K Array to identify differential allelic expression. We found that from the 5,133 SNPs that were suitable for analysis (heterozygous in our sample and expressed in peripheral blood mononuclear cells), 2,934 (57%) SNPs had differential allelic expression. Such SNPs were equally distributed along human chromosomes and biological processes. We validated the presence or absence of ASGE in 18 out 20 SNPs (90%) randomly selected by real time PCR in 48 human subjects. In addition, we observed that SNPs close to -but not included in- segmental duplications had increased levels of ASGE. Finally, we found that transcripts of unknown function or non-coding RNAs, also display ASGE: from a total of 2,308 intronic SNPs, 1510 (65%) SNPs underwent differential allelic expression. In summary, ASGE is a widespread mechanism in the human genome whose regulation seems to be far more complex than expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613524 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004150 | PLOS |
Immunogenetics
January 2025
Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
T cells recognize peptides displayed on the surface of cells on MHC molecules. Genetic variation in MHC genes alters their peptide-binding repertoire and thus influences the potential immune response generated against pathogens. Both gorillas and chimpanzees show reduced diversity at their MHC class I A (MHC-A) locus compared to humans, which has been suggested to be the result of a pathogen-mediated selective sweep.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan.
Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.
The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA; Department of Population Health, University of Texas at Austin, Austin, TX, USA. Electronic address:
Sex differences in human transcriptomes have been argued to drive sex-differential selection (SDS). Here, we show that previous evidence supporting this hypothesis has been largely unfounded. We develop a method to test for a genome-wide relationship between sex differences in expression and selection on expression-influencing alleles (expression quantitative trait loci [eQTLs]).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!