A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A minimal model of tumor growth inhibition. | LitMetric

A minimal model of tumor growth inhibition.

IEEE Trans Biomed Eng

Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, I-27100 Pavia, Italy.

Published: December 2008

The preclinical development of antitumor drugs greatly benefits from the availability of models capable of predicting tumor growth as a function of the drug administration schedule. For being of practical use, such models should be simple enough to be identifiable from standard experiments conducted on animals. In the present paper, a stochastic model is derived from a set of minimal assumptions formulated at cellular level. Tumor cells are divided in two groups: proliferating and nonproliferating. The probability that a proliferating cell generates a new cell is a function of the tumor weight. The probability that a proliferating cell becomes nonproliferating is a function of the plasma drug concentration. The time-to-death of a nonproliferating cell is a random variable whose distribution reflects the nondeterministic delay between drug action and cell death. The evolution of the expected value of tumor weight obeys two differential equations (an ordinary and a partial differential one), whereas the variance is negligible. Therefore, the tumor growth dynamics can be well approximated by the deterministic evolution of its expected value. The tumor growth inhibition model, which is a lumped parameter model that in the last few years has been successfully applied to several antitumor drugs, is shown to be a special case of the minimal model presented here.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2008.913420DOI Listing

Publication Analysis

Top Keywords

tumor growth
16
minimal model
8
growth inhibition
8
antitumor drugs
8
probability proliferating
8
proliferating cell
8
tumor weight
8
evolution expected
8
expected tumor
8
tumor
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!