AI Article Synopsis

Article Abstract

Down syndrome (DS), caused by trisomy of human chromosome 21 (chr21), is the most common genetic cause of intellectual disability. The Ts65Dn mouse model of DS is trisomic for orthologs of 94 chr21-encoded, confirmed protein-coding genes and displays a number of behavioral deficits. Recently, Ts65Dn mice were shown to be hypersensitive to the locomotor stimulatory effects of the high-affinity N-methyl-d-aspartate (NMDA) receptor (NMDAR) channel blocker, MK-801. This is consistent with the functions of several chr21 proteins that are predicted directly or indirectly to impact NMDAR function or NMDAR-mediated signaling. In this study, we show that a second mouse model of DS, the Ts1Cje, which is trisomic for 70 protein-coding genes, is also hypersensitive to MK-801. To investigate the molecular basis for the responses to MK-801, we have measured levels of a subset of chr21 and phosphorylated non-chr21 proteins, in the cortex and hippocampus of Ts65Dn and Ts1Cje mice and euploid controls, with and without treatment with MK-801. We show that in euploid mice, the chr21-encoded proteins, TIAM1 and DYRK1A, and phosphorylation of AKT, ERK1/2 and the transcription factor ELK are involved in the MK-801 response. However, in both Ts65Dn and Ts1Cje mice, levels of phosphorylation are constitutively elevated in naïve, unstimulated mice, and the MK-801-induced changes in TIAM1 and DYRK1A and in phosphorylation are either absent or abnormal, with both genotype and brain-region-specific patterns. These results emphasize the complexities of the pathway perturbations that arise with segmental trisomy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677016PMC
http://dx.doi.org/10.1111/j.1601-183X.2008.00428.xDOI Listing

Publication Analysis

Top Keywords

ts65dn ts1cje
12
mouse model
8
protein-coding genes
8
ts1cje mice
8
tiam1 dyrk1a
8
dyrk1a phosphorylation
8
mk-801
6
ts65dn
5
mice
5
molecular responses
4

Similar Publications

Embryonic statistical analyses reveal 2 growth phenotypes in mouse models of Down syndrome.

Am J Obstet Gynecol

February 2024

Section on Prenatal Genomics and Fetal Therapy, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.

Background: Down syndrome is associated with several comorbidities, including intellectual disability, growth restriction, and congenital heart defects. The prevalence of Down syndrome-associated comorbidities is highly variable, and intellectual disability, although fully penetrant, ranges from mild to severe. Understanding the basis of this interindividual variability might identify predictive biomarkers of in utero and postnatal outcomes that could be used as endpoints to test the efficacy of future therapeutic interventions.

View Article and Find Full Text PDF

Visual discrimination and inhibitory control deficits in mouse models of Down syndrome: A pilot study using rodent touchscreen technology.

J Neurosci Res

April 2023

Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA.

Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model.

View Article and Find Full Text PDF

Novel insights from fetal and placental phenotyping in 3 mouse models of Down syndrome.

Am J Obstet Gynecol

September 2021

Section on Prenatal Genomics and Fetal Therapy, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.

Background: In human fetuses with Down syndrome, placental pathology, structural anomalies and growth restriction are present. There is currently a significant lack of information regarding the early life span in mouse models of Down syndrome.

Objective: The objective of this study was to examine embryonic day 18.

View Article and Find Full Text PDF

Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones.

View Article and Find Full Text PDF

Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!