A new redox amphiphilic ionic liquid (AIL) containing ferrocene as a redox-active group was synthesized, 1-(11-ferrocenylundecyl)-3-methylimidazolium bromide (Fc11MIm+). Adsorption and aggregation of both reduced and oxidized forms of this ferrocenated AIL in aqueous solution were studied by surface tension measurements. The micellization was favored for the reduced ferrocenated AIL (Fc11MIm+) as compared with the oxidized ferrocenated AIL (Fc+11MIm+). Minimum areas at the air/aqueous solution interface were identical whereas limiting surface tensions were slightly different. This corroborated the formation of an expanded monolayer of redox active AIL at the interface. The electrochemical behavior of redox active AIL was investigated. The electrochemical responses of Fc11MIm+ aqueous solution interestingly differed, depending on its concentration. Below the cmc, the electrochemical reaction was dominated by ferrocenated AIL adsorbed onto the electrode surface; then above the cmc, it was controlled by the Fc11MIm+ diffusing to the electrode. For the latter, the electrochemical mechanism was suggested to couple with the disruption reaction of the reduced form micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la803212qDOI Listing

Publication Analysis

Top Keywords

ferrocenated ail
16
aqueous solution
12
amphiphilic ionic
8
ionic liquid
8
redox active
8
active ail
8
ail
7
redox-switched amphiphilic
4
liquid behavior
4
behavior aqueous
4

Similar Publications

A new redox amphiphilic ionic liquid (AIL) containing ferrocene as a redox-active group was synthesized, 1-(11-ferrocenylundecyl)-3-methylimidazolium bromide (Fc11MIm+). Adsorption and aggregation of both reduced and oxidized forms of this ferrocenated AIL in aqueous solution were studied by surface tension measurements. The micellization was favored for the reduced ferrocenated AIL (Fc11MIm+) as compared with the oxidized ferrocenated AIL (Fc+11MIm+).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!