Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the first article of this series we demonstrated the importance of specific intrapeptide interactions and peptide-lipid contacts for the membrane binding of penetratin (pAntp). Here in focus was detailed characterization of spatial hydrophobic/hydrophilic properties of the bilayer surface and their influence on the binding mode of pAntp. From the hydrophobicity point of view, the solvent-accessible surfaces of lipid bilayers possess a distinctly "mosaic" character. This correlates well with the occurrence of dynamic clusters of hydrophobic surface area formed by hydrocarbon tails of phospholipids exposed on the interface. Such mosaic patterns are specific for lipid bilayers of particular composition. In an anionic membrane, they determine initial stages of pAntp adsorption, which strongly depends on the "complementarity" between polarity properties of the peptide and its local interfacial environment. If high complementarity is established, then pAntp penetrates deeply into the membrane without significant destabilization of its initial secondary structure. Alternatively, partial unfolding of pAntp takes place in order to compensate unfavorable peptide-membrane interactions upon embedding. Such effects explain complicated behavior of membrane-active peptides, especially if the target membrane surface is of distinctly mosaic nature, depending on the microscopic properties of the water-lipid interface, pAntp is capable of adopting different pathways to exercise its biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp803641x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!