Metabolites from the biodegradation of a potential plasticizer 1,6-hexanediol dibenzoate in the presence of n-hexadecane as a co-substrate by the common soil organism Rhodococcus rhodochrous were identified using GC/MS and Fourier transform mass spectroscopy (FTMS) techniques. Trimethylsilylation of compounds from the biodegradation broth permitted detection of the following metabolites: 1-hexadecyl benzoate, 6-benzoyloxyhexanoic acid, 4-benzoyloxybutanoic acid, 6-benzoyloxyhexan-1-ol and benzoic acid. The presence of these metabolites was confirmed by repeating the biodegradation with 1,6-hexanediol di[(2)H(5)]benzoate, by measurement of their exact masses in FTMS and by comparison with available authentic materials. The results show that biodegradation of 1,6-hexanediol dibenzoate by R. rhodochrous does not lead to the accumulation of persistent metabolites as has been reported for commercial dibenzoate plasticizers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.1541DOI Listing

Publication Analysis

Top Keywords

biodegradation 16-hexanediol
12
16-hexanediol dibenzoate
12
metabolites biodegradation
8
rhodococcus rhodochrous
8
metabolites
5
16-hexanediol
4
dibenzoate
4
dibenzoate potential
4
potential green
4
green plasticizer
4

Similar Publications

Craniofacial bone defects induced by congenital malformations, trauma, or diseases frequently challenge the orthodontic or restorative treatment. Stem cell-based bone regenerative approaches emerged as a promising method to resolve bone defects. Microenvironment physical cues, such as the matrix elastic modulus or matrix topography, regulate stem cell differentiation via multiple genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!