Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of different cytogenetic changes has been extensively evaluated in patients with acute myeloid leukemia (AML), and cytogenetic analysis of AML blasts is essential to form prognostic subgroups in order to stratify for the extent of therapy. Nevertheless, 40-45% of AML patients lack such cytogenetic markers, i.e., cytogenetically normal AML (CN-AML). In the past decade, different molecular aberrations were identified in AML and especially CN-AML can now be discriminated into certain prognostic subgroups. This review considers the latest advances to define the prognostic impact of molecular aberrations in AML and gives insights how such molecular markers can be applied for analysis of minimal residual disease. Furthermore, therapeutic implications as well as the potential role of new methodological techniques in analyzing expression patterns of AML blasts are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-008-0524-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!