The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana.

J Mol Evol

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.

Published: January 2009

The goal of this study was to assess the extent to which transposable elements (TEs) have contributed to protein-coding regions in Arabidopsis thaliana. To do this, we first characterized the extent of chimeric TE-gene constructs. We compared a genome-wide TE database to genomic sequences, annotated coding regions, and EST data. The comparison revealed that 7.8% of expressed genes contained a region with close similarity to a known TE sequence. Some groups of TEs, such as helitrons, were underrepresented in exons relative to their genome-wide distribution; in contrast, Copia-like and En/Spm-like sequences were overrepresented in exons. These 7.8% percent of genes were enriched for some GO-based functions, particularly kinase activity, and lacking in other functions, notably structural molecule activity. We also examined gene family evolution for these genes. Gene family information helped clarify whether the sequence similarity between TE and gene was due to a TE contributing to the gene or, instead, the TE co-opting a portion of the gene. Most (66%) of these genes were not easily assigned to a gene family, and for these we could not infer the direction of the relationship between TE and gene. For the remainder, where appropriate, we built phylogenetic trees to infer the direction of the TE-gene relationship by parsimony. By this method, we verified examples where TEs contributed to expressed proteins. Our results are undoubtedly conservative but suggest that TEs may have contributed small protein segments to as many as 1.2% of all expressed, annotated A. thaliana genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-008-9190-5DOI Listing

Publication Analysis

Top Keywords

tes contributed
12
gene family
12
transposable elements
8
arabidopsis thaliana
8
infer direction
8
gene
7
genes
5
contribution transposable
4
expressed
4
elements expressed
4

Similar Publications

Acute effects of voluntary breathing patterns on postural control during walking.

Hum Mov Sci

January 2025

Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:

Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).

View Article and Find Full Text PDF

DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.

View Article and Find Full Text PDF

Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment.

Front Plant Sci

January 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.

Introduction: Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored.

View Article and Find Full Text PDF

Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.

View Article and Find Full Text PDF

Objective: Temporal encephaloceles (TEs) are seen in patients with drug-resistant epilepsy (DRE); yet they are also common incidental findings. Variability in institutional pre-surgical epilepsy practices and interpretation of epileptogenic network localization contributes to bias in existing epilepsy cohorts with TE, and therefore the relevance of TE in DRE remains controversial. We sought to estimate effect sizes and sample sizes necessary to demonstrate clinically relevant improvements in seizure outcome with different surgical approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!