The onset of storage lipid biosynthesis during seed development in the oilseed crop Brassica napus (rape seed) coincides with a drastic qualitative and quantitative change in fatty acid composition. During this phase of storage lipid biosynthesis, the enzyme activities of the individual components of the fatty acid synthase system increase rapidly. We describe a rapid and simple purification procedure for the plastid-localized NADH-dependent enoyl-acyl carrier protein reductase from developing B. napus seed, based on its affinity towards the acyl carrier protein (ACP). The purified protein was N-terminally sequenced and used to raise a potent antibody preparation. Immuno-screening of a seed-specific lambda gt11 cDNA expression library resulted in the isolation of enoyl-ACP reductase cDNA clones. DNA sequence analysis of an apparently full-length cDNA clone revealed that the enoyl-ACP reductase mRNA is translated into a precursor protein with a putative 73 amino acid leader sequence which is removed during the translocation of the protein through the plastid membrane. Expression studies in Escherichia coli demonstrated that the full-length cDNA clone encodes the authentic B. napus NADH-dependent enoyl-ACP reductase. Characterization of the enoyl-ACP reductase genes by Southern blotting shows that the allo-tetraploid B. napus contains two pairs of related enoyl-ACP reductase genes derived from the two distinct genes found in both its ancestors, Brassica oleracea and B. campestris. Northern blot analysis of enoyl-ACP reductase mRNA steady-state levels during seed development suggests that the increase in enzyme activity during the phase of storage lipid accumulation is regulated at the level of gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00037070 | DOI Listing |
Colloids Surf B Biointerfaces
December 2024
Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil. Electronic address:
Background: Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China. Electronic address:
In this study, a series of novel thieno [3, 2-b]pyridinone derivatives were designed and synthesized using a scaffold hopping strategy. Six compounds showed potent anti-mycobacterial activity (minimum inhibitory concentration (MIC) ≤ 1 μg/mL) against Mycobacterium tuberculosis (Mtb) UAlRa. Compound 6c displayed good activity against Mtb UAlRv (MIC = 0.
View Article and Find Full Text PDFRSC Adv
July 2024
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 Telangana India +91 40 66303527.
Twenty-eight compounds, , 1,8-naphthyridine-3-carbonitrile (ANC and ANA) derivatives, were designed and synthesized through a molecular hybridization approach. The structures of these compounds were analyzed and confirmed using H NMR, C NMR, LCMS, and elemental analyses. The synthesized compounds were evaluated by testing for their effectiveness against tuberculosis using the MABA assay, targeting the H37Rv strain.
View Article and Find Full Text PDFACS Omega
May 2024
Laboratório de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil.
Malaria, caused by Plasmodium protozoa with as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of (PfENR) as a promising target for antimalarial drug discovery.
View Article and Find Full Text PDFComput Biol Chem
August 2024
Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil; Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Brazil; Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Brazil. Electronic address:
Malaria is one of most widespread infectious disease in world. The antimalarial therapy presents a series of limitations, such as toxicity and the emergence of resistance, which makes the search for new drugs urgent. Thus, it becomes necessary to explore essential and exclusive therapeutic targets of the parasite to achieve selective inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!