A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mobilization and margination of bone marrow Gr-1high monocytes during subclinical endotoxemia predisposes the lungs toward acute injury. | LitMetric

The specialized role of mouse Gr-1(high) monocytes in local inflammatory reactions has been well documented, but the trafficking and responsiveness of this subset during systemic inflammation and their contribution to sepsis-related organ injury has not been investigated. Using flow cytometry, we studied monocyte subset margination to the pulmonary microcirculation during subclinical endotoxemia in mice and investigated whether marginated monocytes contribute to lung injury in response to further septic stimuli. Subclinical low-dose i.v. LPS induced a rapid (within 2 h), large-scale mobilization of bone marrow Gr-1high monocytes and their prolonged margination to the lungs. With secondary LPS challenge, membrane TNF expression on these premarginated monocytes substantially increased, indicating their functional priming in vivo. Zymosan challenge produced small increases in pulmonary vascular permeability, which were markedly enhanced by the preadministration of low-dose LPS. The LPS-zymosan-induced permeability increases were effectively abrogated by pretreatment (30 min before zymosan challenge) with the platelet-activating factor antagonist WEB 2086 in combination with the phosphatidylcholine-phospholipase C inhibitor D609, suggesting the involvement of platelet-activating factor/ceramide-mediated pathways in this model. Depletion of monocytes (at 18 h after clodronate-liposome treatment) significantly attenuated the LPS-zymosan-induced permeability increase. However, restoration of normal LPS-induced Gr-1high monocyte margination to the lungs (at 48 h after clodronate-liposome treatment) resulted in the loss of this protective effect. These results demonstrate that mobilization and margination of Gr-1high monocytes during subclinical endotoxemia primes the lungs toward further septic stimuli and suggest a central role for this monocyte subset in the development of sepsis-related acute lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669775PMC
http://dx.doi.org/10.4049/jimmunol.182.2.1155DOI Listing

Publication Analysis

Top Keywords

gr-1high monocytes
16
subclinical endotoxemia
12
mobilization margination
8
bone marrow
8
marrow gr-1high
8
monocytes subclinical
8
monocyte subset
8
lung injury
8
septic stimuli
8
low-dose lps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!