The present paper addresses the following question: can a simple regulatory bone remodeling model predict effects of unloading conditions on the trabecular bone morphology? In an attempt to answer this question, rat tail-suspension was chosen as a model that mimics the microgravity environment. Over 23 days, histomorphometric analysis was carried out on cross-sections of tibias of the suspended animals. The slices were digitalized and images discretized to obtain osteocyte distribution and apparent bone density. Based on these experimental data, finite element simulations were conducted to evaluate the bone loss and the change in trabecular architecture similar to those observed after a spaceflight. The numerical model is driven by a remodeling law that takes into account the nonuniform osteocyte distribution that may itself provide mechanoreception. We used the bone density rate of change from the remodeling theory and a time stepping algorithm witch are implemented in a finite element software. This approach takes into account the unloading effects on bone remodeling process and permits to confront experimental and numerical data. We showed that there is a good agreement between these data, particularly at the beginning of the simulated bone mass loss during the rat tail-suspension experiment. Indeed, we obtained a variation of 5.25% at day 7 (D7), 2.09% at day 13 (D13) and finally, 51.03% at day 23 (D23). Despite that last variation, the proposed theoretical model can be suitable to simulate the alteration of bone mineral density under the specific unloading conditions of the rat tail-suspension model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2008.10.008DOI Listing

Publication Analysis

Top Keywords

bone remodeling
12
unloading conditions
12
rat tail-suspension
12
bone
9
osteocyte distribution
8
bone density
8
finite element
8
takes account
8
model
5
remodeling regulation
4

Similar Publications

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Background/purpose: Autologous dentin materials are among the most promising bone substitutes for preventing osseous defects on the distal side of the lower second molar. This study aimed to investigate the effects of autologous demineralized dentin matrix on postoperative complications and wound healing after lower third molar surgery.

Materials And Methods: Thirteen patients with bilateral symmetrical lower third molars participated in this split-mouth randomized clinical trial.

View Article and Find Full Text PDF

Bone fractures are a leading cause of morbidity and healthcare expenditure globally. The complex healing process involves inflammation, cartilage formation, mineralization, and bone remodeling. Current treatments like immobilization, surgery, and bone grafting, though effective, pose significant challenges, such as prolonged recovery and high costs.

View Article and Find Full Text PDF

Osteoporosis under psychological stress: mechanisms and therapeutics.

Life Med

February 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.

Psychological stress has been associated with the onset of several diseases, including osteoporosis. However, the underlying pathogenic mechanism remains unknown, and effective therapeutic strategies are still unavailable. Growing evidence suggests that the sympathetic nervous system regulates bone homeostasis and vascular function under psychological stress, as well as the coupling of osteogenesis and angiogenesis in bone development, remodeling, and regeneration.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!