We present simultaneous measurement of enhancement kinetics of an optical and a magnetic resonance (MR) contrast agent in a small animal breast tumor model (R3230 ac) using a combined MR-diffuse optical tomographic (MR-DOT) imaging system. A mixture of a small molecular-weight MR contrast agent gadolinium-diethylene-triamine-pentaacetic acid (Gd-DTPA) and a large molecular-weight optical contrast agent indocyanine green (ICG) was administered intravenously for multimodal dynamic imaging. Coregistration of optical and MR images was accomplished using agar-water-based markers. Using T(2) and dynamic T(1) weighted MR images, we divided the entire tumor into two regions of interest (ROI): a viable and a nonviable region. The absorption enhancements in the ROIs were calculated. An enhancement of the ICG was observed in the viable region. On the contrary, there was a lower enhancement in the nonviable region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943837 | PMC |
http://dx.doi.org/10.1117/1.3041165 | DOI Listing |
Soft Matter
January 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: In the realm of breast cancer diagnosis and treatment, accurately discerning molecular subtypes is of paramount importance, especially when aiming to avoid invasive tests. The updated guidelines for diagnosing and treating HER2 positive advanced breast cancer, as presented at the 2021 National Breast Cancer Conference and the Annual Meeting of the Chinese Society of Clinical Oncology, highlight the significance of this approach. A new generation of drug-antibody combinations has emerged, expanding the array of treatment options for HER2 positive advanced breast cancer and significantly improving patient survival rates.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: The bolus tracking technique has been used for decades, yet still faces the challenging task of determining the optimal scanning time for individuals. Our study aimed to assess the feasibility of a novel bolus tracking method with a personalized post-trigger delay (PTD) to optimize scanning time and achieve optimized enhancement and contrast homogeneity in aortic computed tomography angiography (CTA).
Methods: Participants undergoing aortic CTA with bolus tracking were prospectively assigned to two different groups: Group A with a fixed 6-second PTD and Group B with a personalized PTD.
J Mater Chem B
January 2025
Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Development of novel Gd-based contrast agents for targeted magnetic resonance imaging (MRI) of liver cancer remains a great challenge. Herein we reported a novel Gd-based MRI contrast agent with improved relaxivity for specifically diagnosing liver cancer. This GSH-responsive macromolecular contrast agent (mCA), POLDGd, was prepared by RAFT polymerization, and its lactic acid moiety could precisely target the ASGP-R surface protein on liver cancer cells, whereas PODGd without the lactic acid moiety was prepared as a control.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA.
Background And Purpose: The central vein sign (CVS) is a diagnostic imaging biomarker for multiple sclerosis (MS). FLAIR* is a combined MRI contrast that provides high conspicuity for CVS at 3 Tesla (3T), enabling its sensitive and accurate detection in clinical settings. This study evaluated whether CVS conspicuity of 3T FLAIR* is reliable across imaging sites and MRI vendors and whether gadolinium (Gd) contrast increases CVS conspicuity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!