Auxiliary-mediated domino crotylations and pentenylations of butanone yield homoallylic ethers with two newly formed stereogenic centers. With our norpseudoephedrine-derived auxiliary, we observed the formation of anti isomers exclusively, and the nature of the major isomer was independent of the substrate double bond geometry. Interestingly, there is a switch in induced selectivity when going from crotylation to pentenylation. Here, we present the computational rationalization for this behavior by identification of the relevant transition states (TSs), the energies of which were determined by using the B3LYP/6-31+G(d) level of theory in combination with the PCM/UAKS method to include the effects exerted by the solvent dichloromethane. To quickly narrow down the number of potentially relevant TSs from the whole set of 288 and 864 TSs for the crotylation and pentenylation, respectively, we employed a screening process based on B3LYP//AM1 energies. The predicted selectivities are in good agreement with experimentally determined ones. Furthermore, the obtained results also facilitate an explanation of the selectivities obtained in hexenylations and heptenylations. Finally, activation energies were determined that account for the significantly longer reaction times than those for the domino allylation with unsubstituted trimethylallylsilane.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200801889DOI Listing

Publication Analysis

Top Keywords

crotylation pentenylation
12
energies determined
8
stereoselective allylation
4
allylation ketones
4
ketones explanation
4
explanation unusual
4
unusual inversion
4
inversion induced
4
induced stereochemistry
4
stereochemistry auxiliary-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!