Epilepsy is a serious neurological disorder with neuronal loss and spontaneous recurrent seizures, but the neurochemical basis remains largely unclear. We hypothesize that D-serine, a newly identified endogenous co-agonist of N-methyl-D-aspartate (NMDA) receptor, may trigger excitotoxicity and neuronal damage in epileptogenesis. By using a mouse pilocarpine model, immunohistochemistry, Fluoro-Jade staining and double-labeling, the present study revealed up-regulation of D-serine expression in a proportion (41%) of neurons in the cerebral cortex and hippocampus. The D-serine-positive neurons occurred at 4 h, reached peak levels at 12-24 h, and gradually went down at 3-14 days. Moreover, most of D-serine-positive neurons were GABAergic (98%), underwent degenerating death (93%), and were accompanied enhancing phosphorylation of NMDA receptor subunit 1. This study has provided new evidence that up-regulation of D-serine production might induce GABAergic neuronal degeneration through excitotoxic mechanism in the pilocarpine model and may be involved in early pathogenesis and recurrent seizure of chronic epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-008-9897-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!