Human SGLT1 protein is an established sodium-glucose cotransporter. Despite widespread use of the mouse as a model organism, the mouse SGLT1 homologue has yet to be functionally characterized. Additionally, the crystal structure of a sugar transporter homologue, Vibrio SGLT, has recently been described, however, it offers limited information about the role of transmembrane segments outside of the core ligand binding domains. In particular, the amino acids in TM1 were not assigned in the structure. To examine the contribution of TM1 to the function of SGLT1, we have cloned and characterized the biophysical properties of SGLT1 from mouse, mSGLT1, and compared it to a clone containing an amino acid substitution in TM1, F36S. As predicted, both proteins formed functional Na+/sugar cotransporters, but F36S-mSGLT1 showed decreased rates of sugar uptake and decreased apparent affinities for both Na+ and sugar compared to mSGLT1. Analysis of pre-steady-state currents and comparison with the crystal structure of Vibrio SGLT provide plausible mechanisms to explain the differences in function of these two proteins. Our data suggest that amino acids in TM1, which are not involved in ligand binding and translocation pathways, significantly influence the functional properties of sodium-glucose carrier proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00232-008-9143-3 | DOI Listing |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFAmino Acids
January 2025
Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!