Peptide-based Biopolymers in Biomedicine and Biotechnology.

Mater Sci Eng R Rep

Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281.

Published: January 2008

Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575411PMC
http://dx.doi.org/10.1016/j.mser.2008.04.004DOI Listing

Publication Analysis

Top Keywords

peptide-based biomaterials
8
peptide-based biopolymers
4
biopolymers biomedicine
4
biomedicine biotechnology
4
biotechnology peptides
4
peptides emerging
4
emerging class
4
class biomaterials
4
biomaterials unique
4
unique chemical
4

Similar Publications

Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.

View Article and Find Full Text PDF

Branched peptide-based materials draw inspiration from dendritic structures to emulate the complex architecture of native tissues, aiming to enhance the performance of biomaterials in medical applications. These innovative materials benefit from several key features: they exhibit slower degradation rates, greater stiffness, and the ability to self-assemble. These properties are crucial for maintaining the structural integrity and functionality of the materials over time.

View Article and Find Full Text PDF

Chemical and Enzymatic Mechanosynthesis of Organocatalytic Peptide Materials Based on Proline and Phenylalanine.

ChemSusChem

January 2025

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales, Instituto de Química, Calle 70 No 52-21, Medellín, NA, Medellín, COLOMBIA.

In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine.

View Article and Find Full Text PDF

Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.

View Article and Find Full Text PDF

Peptide-based nanomaterials can be easily functionalized due to their functional groups, as well as being biocompatible, stable under physiological conditions, and nontoxic. Here, diphenylalanineamide-based nanomaterials (FFANMs) were synthesized, decorated with Ca ions to set the surface charge, and characterized for possible use in gene delivery and drug release studies. FFANMs were characterized by SEM, TEM, dynamic light scattering (DLS), and LC-MS/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!