The phosphoinositide 3-kinase (PI3-kinase)-protein kinase B (Akt) signaling pathway is essential in the induction of physiological cardiac hypertrophy. In contrast, protein kinase C beta2 (PKCbeta2) is implicated in the development of pathological cardiac hypertrophy and heart failure. Thus far, no clear association has been demonstrated between these two pathways. In this study, we examined the potential interaction between the PI3-kinase and PKCbeta2 pathways by crossing transgenic mice with cardiac specific expression of PKCbeta2, constitutively active (ca) PI3-kinase, and dominant-negative (dn) PI3-kinase. In caPI3-kinase/PKCbeta2 and dnPI3-kinase/PKCbeta2 double-transgenic mice, the heart weight-to-body weight ratios and cardiomyocyte sizes were similar to those observed in caPI3-kinase and dnPI3-kinase transgenic mice, respectively, suggesting that the regulation of physiological developmental hypertrophy via modulation of cardiomyocyte size proceeds through the PI3-kinase pathway. In addition, we observed that caPI3-kinase/PKCbeta2 mice showed improved cardiac function while the function of dnPI3-kinase/PKCbeta2 mice was similar to that of the PKCbeta2 group. PKCbeta2 protein levels in both dnPI3-kinase/PKCbeta2 and PKCbeta2 mice were significantly upregulated. Interestingly, however, PKCbeta2 protein expression was significantly attenuated in caPI3-kinase/PKCbeta2 mice. PI3-kinase activity measured by Akt phosphorylation was not affected by PKCbeta2 overexpression. These data suggest a potential interaction between these two pathways in the heart, where PI3-kinase is predominantly responsible for the regulation of physiological developmental hypertrophy and may act as an upstream modulator of PKCbeta2 with the potential for rescuing the pathological cardiac dysfunction induced by overexpression of PKCbeta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660227PMC
http://dx.doi.org/10.1152/ajpheart.00562.2008DOI Listing

Publication Analysis

Top Keywords

developmental hypertrophy
12
pkcbeta2
9
phosphoinositide 3-kinase
8
akt signaling
8
signaling pathway
8
protein kinase
8
hypertrophy heart
8
cardiac hypertrophy
8
pathological cardiac
8
potential interaction
8

Similar Publications

Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.

View Article and Find Full Text PDF

NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction.

Circ Res

January 2025

Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Paediatric breast disease and developmental breast cysts - reflection on 20 years of experience.

ANZ J Surg

January 2025

Department of Breast and Endocrine Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia.

Introduction: Presentation with breast symptoms in the paediatric population is common but there is little existing literature on the workup and management of breast disease in this population.

Methods: Retrospective series of 140 cases of breast disease in the paediatric population managed by a single surgeon in Adelaide, South Australia between 2004 and 2024. Review of patient demographics, presentation, investigation, management and outcomes of various breast symptoms and pathologies using descriptive analysis.

View Article and Find Full Text PDF

Solid organ transplantation has emerged as a crucial intervention in the field of medicine. During transplantation, our human body perceives the organ as an exogenous entity or graft, initiating an immune reaction to eliminate it. This immune response ultimately culminates in the rejection of the graft.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!