Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The objective of this study was to determine the contamination profiles and mass loadings of urobilin (a chemical marker of human waste), macrolide antibiotics (azithromycin, clarithromycin, roxithromycin), and two drugs of abuse (methamphetamine and ecstasy), from a small (<19 mega liters day(-1), equivalent to <5 million gallons per day) wastewater treatment plant in southwestern Kentucky. The concentrations of azithromycin, clarithromycin, methamphetamine and ecstasy in wastewater samples varied widely, ranging from non-detects to 300 ng L(-1). Among the macrolide antibiotics analyzed, azithromycin was consistently detected in influent and effluent samples. In general, influent samples contained relatively higher concentrations of the analytes than the effluents. Based on the daily flow rates and an average concentration of 17.5 ng L(-1) in the effluent, the estimated discharge of azithromycin was 200 mg day(-1) (range 63-400 mg day(-1)). Removal efficiency of the detected analytes from this WWTP were in the following order: urobilin>methamphetamine>azithromycin with percentages of removal of 99.9%, 54.5% and 47%, respectively, indicating that the azithromycin and methamphetamine are relatively more recalcitrant than others and have potential for entering receiving waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2008.11.047 | DOI Listing |
Environ Toxicol Chem
January 2025
School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia.
Heavy metals are cumulative toxicants that frequently create negative health effects for waterbirds inhibiting contaminated freshwater systems. Although levels of exposure to heavy metals have been well documented for many waterbird species, the adverse effects of exposure remain relatively poorly understood. One emerging field that allows the exploration of such effects is metabolomics.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:
The extensive use of antibiotics has led to their frequent detection as residues in the environment. However, monitoring of their levels in groundwater and the associated ecological and health risks remains limited, and the impact of river pollution on groundwater is still unclear. This study focused on the highly urbanized Maozhou River and its groundwater.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza, Egypt.
This study reports the synthesis, characterization, and optical properties of ZnO, ZnCeO, and ZnNdO nanoparticles and their interactions with lead acetate solutions. X-ray diffraction (XRD) confirmed that the nanoparticles were synthesized in a single-phase hexagonal structure, with crystallite sizes of 12.48 nm, 50.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada.
Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!