Burkholderia pseudomallei, the causative agent of melioidosis, is an important intracellular pathogen in tropical regions. TANK-binding kinase (TBK1), part of the pathway that induces transcription of Type I interferon genes, has been demonstrated to play an important role in controlling intracellular bacterial infections. To investigate the role of tbk1 in protecting against B. pseudomallei we developed tbk1-deficient cell lines by using shRNA for transient knockdown of the tbk1 gene in HeLa and RAW 264.7 cells. In tbk1-deficient RAW cells, the replication of invasive and non-invasive Escherichia coli was significantly increased at 48 h after infection compared with wild-type cells. The result was confirmed using Brucella melitensis in tbk1-deficient HeLa cells, which demonstrated a >1.5-2.0 log higher bacterial count at 6-48 h after infection compared to wild-type cells. By contrast, the growth of Burkholderia pseudomallei expressing either typical (A2) or atypical (G207) lipopolysaccharide was not significantly different between the tbk1-deficient and control cells. These results suggest that the tbk1 gene and its activation may be able to control invasive E. coli, non-invasive E. coli and B. melitensis growth but may not be able to control B. pseudomallei infection. The role of the tbk1 gene in proinflammatory cytokine induction and bacterial intracellular infection needs further investigation to identify mechanistic differences among the life cycles of various intracellular bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0035-9203(08)70023-3 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.
Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
Background: Melioidosis is a multisystem infectious disease caused by the environmental bacterium . Osteomyelitis (OM) and septic arthritis (SA) are uncommon primary presentations for melioidosis but important secondary foci, often requiring prolonged therapy and multiple surgeries. We characterized the epidemiology, presentation, treatment, and outcomes of patients from 24 years of the Darwin Prospective Melioidosis Study (DPMS).
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Infectious Diseases, Kasturba Medical College Manipal, Manipal Academy of higher Education, Manipal, Karnataka, India, 576104.
Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to multiple classes of antibiotics and primarily affects immunocompromised individuals, such as those with poorly controlled diabetes or malignancies. In this case, a 58-y-old female farmer with poorly controlled diabetes (HbA1c of 11.4%), metastatic breast cancer with chemotherapy-induced pancytopenia and disseminated melioidosis showed no improvement despite receiving antibiotics and supportive care.
View Article and Find Full Text PDFInfect Genet Evol
January 2025
University Paris-Est, Anses, Animal health laboratory, Bacterial zoonosis unit, Maisons-Alfort, France. Electronic address:
Burkholderia pseudomallei, a soil-borne bacterium that causes melioidosis, endemic in South and Southeast Asia and northern Australia, is now emerging in new regions. Since the 1990s, cases have been reported in French overseas departments, including Martinique and Guadeloupe in the Caribbean, and Reunion Island and Mayotte in the Indian Ocean, suggesting a local presence of the bacterium. Our phylogenetic analysis of 111 B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!