Background: Prefrontal deficits in gamma-aminobutyric acid (GABA)ergic gene expression, including neuropeptide Y (NPY), somatostatin (SST), and parvalbumin (PV) messenger RNAs (mRNAs), have been reported for multiple schizophrenia cohorts. Preclinical models suggest that a subset of these GABAergic markers (NPY/SST) is regulated by brain-derived neurotrophic factor (BDNF), which in turn is under the inhibitory influence of small noncoding RNAs. However, it remains unclear if these mechanisms are important determinants for dysregulated NPY and SST expression in prefrontal cortex (PFC) of subjects with schizophrenia.

Methods: Using a postmortem case-control design, the association between BDNF protein, NPY/SST/PV mRNAs, and two BDNF-regulating microRNAs (miR-195 and miR-30a-5p) was determined in samples from the PFC of 20 schizophrenia and 20 control subjects. Complementary studies were conducted in cerebral cortex of mice subjected to antipsychotic treatment or a brain-specific ablation of the Bdnf gene.

Results: Subjects with schizophrenia showed deficits in NPY and PV mRNAs. Within-pair differences in BDNF protein levels showed strong positive correlations with NPY and SST and a robust inverse association with miR-195 levels, which in turn were not affected by antipsychotic treatment or genetic ablation of Bdnf.

Conclusions: Taken together, these results suggest that prefrontal deficits in a subset of GABAergic mRNAs, including NPY, are dependent on the regional supply of BDNF, which in turn is fine-tuned through a microRNA (miRNA)-mediated mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2008.11.019DOI Listing

Publication Analysis

Top Keywords

determinants dysregulated
8
gabaergic gene
8
gene expression
8
expression prefrontal
8
prefrontal cortex
8
subjects schizophrenia
8
prefrontal deficits
8
subset gabaergic
8
bdnf turn
8
npy sst
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!