1. Since the early 1990s, an increasing proportion of barnacle geese, Branta leucopsis, bound for breeding sites in the Russian Arctic delay their departure from the wintering quarters in the Wadden Sea by 4 weeks. These late-migrating geese skip spring stopover sites in the Baltic traditionally used by the entire population. 2. Individual geese from an arctic colony tracked by satellite or light-level geolocators during spring migration in 2004 and 2005 predominantly followed the new strategy, but a minority still maintained the traditional pattern. Despite a spread of more than 50 days in departure date from the Wadden Sea, both early and late departing females laid their eggs within the short time-window conferring breeding success. 3. The spread of these new migration routines coincided with a strong increase of overall numbers and the exploitation of new spring staging resources in the Wadden Sea. Counts from Estonia demonstrate that numbers have levelled off recently at the Baltic staging sites, suggesting that the capacity of these staging sites in spring has been reached. Although onset of spring affects migratory timing in barnacle geese, it cannot explain the observed delay in departure from the wintering grounds. 4. We hypothesize that the new migratory strategy has evolved in response to increased competition for food at spring staging sites in the Baltic. According to an analytical model of optimal migration, the geese should skip the Baltic whenever the energy deposition rate falls below 88% of the Wadden Sea value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2008.01485.x | DOI Listing |
Int J Remote Sens
November 2024
Department of Physical Geography, Utrecht University, Utrecht, The Netherlands.
Tidal flat ecosystems, are under steady decline due to anthropogenic pressures including sea level rise and climate change. Monitoring and managing these coastal systems requires accurate and up-to-date mapping. Sediment characteristics and macrozoobenthos are major indicators of the environmental status of tidal flats.
View Article and Find Full Text PDFNature
January 2025
SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.
View Article and Find Full Text PDFGrey mullets (family Mugilidae) are widespread across coastal, brackish, and freshwater habitats, and have supported fisheries for millennia. Despite their global distribution and commercial value, little is known about their movement ecology and its role in the co-existence of sympatric mullet species. Gaps in knowledge about migratory behaviour, seasonal occurrence, and movement scales have also impeded effective management, highlighting the need for further research.
View Article and Find Full Text PDFPeerJ
December 2024
Benthic Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Bremen, Germany.
Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient remineralization capacities. Yet, these benthic fauna are expected to be profoundly affected by current observed rising sea temperatures.
View Article and Find Full Text PDFConserv Biol
December 2024
Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!