The pathogenesis of cataract is associated with oxidative stress and with altered crystallin expression but it is still understood incompletely. In this study, the senescence-accelerated OXYS rats were used as a model. The first biomicroscopic signs of cataract in OXYS rats were registered at the age of 1.5 months; at 3 months morbidity reached 90%, and at 6 months it reached 100%. Cataract manifestation progresses: at 24 months mature cataract was detected in 90% of eyes of OXYS rats, whereas in 80% of Wistar rat eyes only initial signs of this disease were detected. Analysis of lens redox-parameters has shown that in OXYS rats the intensity of tryptophan fluorescence is higher, the GSH content being higher at 2 months but during formation of mature cataract at 13, 18, and 24 months being lower than in Wistar rats. Decrease in solubility of OXYS rat lens proteins was observed at the age of 13 months. At the age of 3 months gene expression of alphaA-crystallin and alphaB-crystallin was 3-fold and 25% lower, respectively, than in Wistar rats. At the age of 14 months there was a 27-fold decrease in expression of alphaB-crystallin in OXYS rats and it became 21-fold lower than in control. Proteins are synthesized in lens epithelial cells and dystrophic changes in senile cataract result in decrease in structural protein expression. The changes observed in OXYS rats are evidently associated with the dystrophic changes in lens epithelium, which we have described earlier, and are consistent with the model of senile cataract.

Download full-text PDF

Source
http://dx.doi.org/10.1134/s0006297908110023DOI Listing

Publication Analysis

Top Keywords

oxys rats
28
age months
16
rats
9
months
9
cataract
8
oxys
8
mature cataract
8
lower wistar
8
wistar rats
8
dystrophic changes
8

Similar Publications

Increasing evidence on the adverse health impacts of microplastics (MPs) is available, but their associated risks to the well-being of humans and long-term impacts are poorly understood. An indicator of the remote effects of MPs may be their influence on the rate of aging. To assess the effects of MPs on the aging process, we used accelerated senescence OXYS rats that develop a complex of geriatric diseases.

View Article and Find Full Text PDF

Background: It is believed that alterations in the functioning of the cytochrome P450 (CYP), which participates in metabolic transformations of endogenous polyunsaturated fatty acids (PUFAs) (with the formation of cardioprotective or cardiotoxic products), affects the development of age-related cardiovascular diseases and reduces the effectiveness of some cardioselective drugs. For example, CYP2J2 activation or CYP1B1 inhibition protects against the cardiovascular toxicity of anticancer drugs. It is currently unclear whether CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs to vasodilatory and vasoconstrictive derivatives are expressed in all heart regions.

View Article and Find Full Text PDF

Visomitin eye drops are the first and, so far, the only drug based on SkQ1 - the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev.

View Article and Find Full Text PDF

GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is the most prevalent type of dementia among the elderly, and a lack of understanding of its mechanisms has resulted in no effective treatments currently being available.
  • This study utilized high-resolution 1H NMR spectroscopy on OXYS rats to identify crucial metabolic changes in the hippocampus across different life stages, focusing on the preclinical period, manifestation, and active progression of AD symptoms.
  • Findings highlighted significant metabolic shifts, including increased scyllo-inositol and decreased hypotaurine in OXYS rats, suggesting these changes may serve as early predictors and biomarkers for the development of AD, potentially applicable to humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!