Objective: To investigate effects of age on thickness and morphologic characteristics of hyaline cartilage, calcified cartilage, total cartilage, and subchondral bone (SCB) in the equine tarsometatarsal joint.
Sample Population: 23 tarsal joints from cadavers of 23 ponies (11 days to 25 years old); ponies were limited to pasture exercise and euthanatized for reasons not related to this study. Procedures-Tarsi were allocated into several age groups (11 days old [n = 3], 6 to 9 months old [4], 2 to 3 years old [3], 6 to 8 years old [4], 11 to 17 years old [6], and 20 to 25 years old [3]). Histologic examination and histomorphometric measurement of hyaline cartilage, calcified cartilage, total cartilage, and SCB were performed at medial and lateral sites.
Results: A significant decrease was detected in thickness of hyaline cartilage and total cartilage with increasing age, but there was a significant increase in thickness of calcified cartilage and SCB with increasing age. Differences in chondrocyte and collagen fiber arrangement, tidemark, and osteochondral junction morphology were evident among age groups.
Conclusions And Clinical Relevance: These findings suggested that the various tissues of the osteochondral unit change in different ways with age. The response of each tissue may be related to relative response of the tissues to strains induced by pasture exercise but could have an influence on how the overall properties of the osteochondral unit change with age. The findings may also be suggestive of changes that develop prior to the onset of osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.70.1.30 | DOI Listing |
Acta Biomater
January 2025
Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:
The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.
View Article and Find Full Text PDFJ Exp Orthop
January 2025
Service of Orthopaedics and Traumatology, Department of Surgery EOC Lugano Switzerland.
Purpose: Subchondral bone marrow lesions (BMLs) are present in a wide range of pathologies with different prognoses. Thus, a careful diagnosis is mandatory to address them with the proper treatment. The aim of this review was to examine BMLs aetiology and their relationship with biomechanical and biological factors, to identify BMLs and help clinicians to properly recognize and treat each of these common alterations.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.
View Article and Find Full Text PDFOsteoarthr Cartil Open
March 2025
Pain Centre Versus Arthritis and Academic Unit of Injury, Recovery and Inflammation Sciences, University of Nottingham, UK.
Objectives: Histological osteochondral characteristics of inflammation, fibrosis, vascularity, cartilage islands, vessels entering cartilage, thickened trabeculae and cysts are associated with bone marrow lesions (BMLs) in human knee osteoarthritis (OA). We identified and developed a method for scoring comparable pathology in two rat OA knee pain models.
Methods: Rats (n = 8-10 per group) were injected with monoiodoacetate (MIA) or saline, or underwent meniscal transection (MNX) or sham surgery.
Lab Chip
January 2025
CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!