Objective: Experimental wounding of articular cartilage results in cell death at the lesion edge. The objective of this study was to investigate whether inhibition of this cell death results in enhanced integrative cartilage repair.

Methods: Bovine articular cartilage discs (6 mm) were incubated in media containing inhibitors of necrosis (Necrostatin-1, Nec-1) or apoptosis (Z-VAD-FMK, ZVF) before cutting a 3 mm inner core. This core was left in situ to create disc/ring composites, cultured for up to 6 weeks with the inhibitors, and analyzed for cell death, sulfated glycosaminoglycan release, and tissue integration.

Results: Creating the disc/ring composites resulted in a significant increase in necrosis. ZVF significantly reduced necrosis and apoptosis at the wound edge. Nec-1 reduced necrosis. Both inhibitors reduced the level of wound-induced sulfated glycosaminoglycan loss. Toluidine blue staining and electron microscopy of cartilage revealed significant integration of the wound edges in disc/ring composites treated with ZVF. Nec-1 improved integration, but to a lesser extent. Push-out testing revealed that ZVF increased adhesive strength compared to control composites.

Conclusions: This study shows that treatment of articular cartilage with cell death inhibitors during wound repair increases the number of viable cells at the wound edge, prevents matrix loss, and results in a significant improvement in cartilage-cartilage integration.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2008.0361DOI Listing

Publication Analysis

Top Keywords

cell death
16
wound edge
12
articular cartilage
12
disc/ring composites
12
edge objective
8
cartilage cell
8
sulfated glycosaminoglycan
8
reduced necrosis
8
cartilage
6
death
5

Similar Publications

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Background: Congenital neutropenia is a primary immunodeficiency characterized by quantitative anomalies in neutrophil counts. It is classified as mild, moderate, or severe. Hematopoietic stem cell transplantation stands as a potential therapeutic intervention; nevertheless, graft-versus-host disease emerges as a main complication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!