Object: The origin of spinal congenital dermal sinuses is not known. A local nondisjunction of the closing neural tube and the epidermal ectoderm is thought to be the cause of this malformation. In this experimental study, a nondisjunction was mimicked in chick embryos to create an animal model for the dermal sinus.

Methods: A piece of amniotic tissue was implanted in the closing neural tube in ovo in chick embryos at 2 days of incubation. A total of 50 embryos were manipulated. After a further incubation time of 2-7 days, the embryos were macroscopically and histologically evaluated.

Results: Dermal sinus-like anomalies were induced in 24 embryos. The induced abnormalities varied from superficial, epidermal lesions to epidermal dimples continuing as a strand of tissue toward the neural tube. This strand invariably was of nonneuronal origin. Additionally, in 3 embryos a split cord malformation was noted, most likely caused by damage to the neural tube during implantation.

Conclusions: Implantation of donor amniotic tissue in the closing chick neural tube does result in a dimple, from which a strand of tissue continues to the neural tube in various cases, indicating that formation of a dermal sinus-like anomaly can be successfully induced by experimental continuation of the connection between neural tube and surface ectoderm. This finding strengthens the hypothesis that a human dermal sinus arises after nondisjunction of neural tube and surface ectoderm.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2008.10.PEDS08184DOI Listing

Publication Analysis

Top Keywords

neural tube
32
spinal congenital
8
congenital dermal
8
dermal sinus
8
neural
8
closing neural
8
tube
8
chick embryos
8
amniotic tissue
8
dermal sinus-like
8

Similar Publications

Background: DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored.

View Article and Find Full Text PDF

Introduction Congenital malformations are a major cause of perinatal morbidity and mortality in developing countries and are assuming greater importance than ever before. They affect a variety of organ systems and various etiologies have been identified in literature including Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus, Herpes Simplex (TORCH) infections, exposure to pollutants, consumption of tobacco and alcohol, and advanced maternal age. In developing countries, diagnosis is frequently delayed which leads to poorer outcomes.

View Article and Find Full Text PDF

Spinal dysraphism is the incomplete fusion of the neural arch, which can be seen as an occult or open neural tube defect. Meningoceles are a form of open neural tube defect characterized by cystic dilatation of the meninges containing cerebrospinal fluid without the involvement of neural tissue. Neurosurgical intervention is necessary in the newborn period since survival in advancing ages is often impossible.

View Article and Find Full Text PDF

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.

View Article and Find Full Text PDF

Sonic Hedgehog Determines Early Retinal Development and Adjusts Eyeball Architecture.

Int J Mol Sci

January 2025

Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan.

The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!