[Juvenile granulosa-cell tumor: clinical and molecular expression].

Gynecol Obstet Fertil

Service d'hormonologie, hôpital Lapeyronie, CHU de Montpellier, Montpellier, France.

Published: January 2009

Ovarian sex cord-stromal tumors are rare tumors that originate from the nongerminal cells of ovary. Two decades ago, the identification of juvenile granulosa-cell tumors (GCT), as a specific entity inside this group, allowed a better treatment of these tumors in children. However, little data have been reported on the natural course of the disease and reliable prognostic factors have not been yet defined. We here review the clinical and genetics aspects of granulosa tumors, based on a series of 40 children. This national collaborative study involved the French Society of Children Cancer and eight clinical departments of pediatric endocrinology. We found that early diagnosis of a tumor, revealed by clinical signs of hyperoestrogeny, is an important prognostic factor. The pathophysiology of these tumors is still debatable and several cellular- and molecular-abnormal signals could be implicated in their development. The role of growth factors and oncogenes through the signaling pathway of MAP kinase is still discussed. According to our data, FSH signaling-transduction pathway, such as a constitutionally activated Galphas, could also be implicated in the induction of granulosa cell proliferation and seems to modulate the invasiveness of the tumor. Last, we have described a low-expression pattern or an extinction of an ovarian-determination gene, FOXL2, which is related to a worse prognosis of this tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gyobfe.2008.06.026DOI Listing

Publication Analysis

Top Keywords

tumors
6
[juvenile granulosa-cell
4
tumor
4
granulosa-cell tumor
4
clinical
4
tumor clinical
4
clinical molecular
4
molecular expression]
4
expression] ovarian
4
ovarian sex
4

Similar Publications

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!