Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice.

J Neurotrauma

Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians University, Munich, Germany.

Published: December 2008

Brain edema is still one of the most deleterious sequels of traumatic brain injury (TBI), and its pathophysiology is not sufficiently understood. The goal of the current study was to investigate the role of arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), an important regulator of tissue water homeostasis, for the formation of post-traumatic brain edema, intracranial pressure (ICP), brain damage, and functional deficits following brain trauma. C57/B16 mice (n=112) were subjected to controlled cortical impact (CCI; 8m/s, 1 mm). At 3 min after trauma, animals received 500 ng of the AVP V(1a)-receptor antogonist (deamino-Pen(1), O-Me-Tyr(2), Arg(8)]-Vasopressin) or 500 ng of the AVP V2-receptor antagonist (adamantaneacetyl(1), O-Et-D-Tyr(2),Val(4), Abu(6),Arg(8,9)]-Vasopressin) by intracerebroventricular injection. After trauma, cerebral water content (24 h), ICP (24 h), contusion volume (24 h and 7 days), and functional outcome (1-7 days) were assessed (n=8 per experimental group). Post-traumatic inhibition of AVP V(1A) receptors reduced ICP by 29% (p < 0.05), brain water content by 45% (p < 0.05), and secondary contusion expansion by 37% (p < 0.05), and it significantly improved motor function 6 and 7 days after trauma (p < 0.05). Inhibition of AVP V2 receptors had no significant effect. The current results demonstrate that vasopressin V(1A) receptors are involved in the pathogenesis of brain edema formation and the subsequent development of secondary brain damage after traumatic brain injury. Accordingly, our study suggests that vasopressin V(1A) receptors may represent a novel therapeutic target for the treatment of post-traumatic brain edema and secondary brain damage.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2008.0597DOI Listing

Publication Analysis

Top Keywords

v1a receptors
16
brain damage
16
brain edema
16
brain
13
vasopressin v1a
12
secondary brain
12
traumatic brain
12
brain injury
12
development secondary
8
damage traumatic
8

Similar Publications

[Revisiting the vasopressin V2 receptor].

Sheng Li Xue Bao

December 2024

Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.

Arginine vasopressin (AVP) plays a crucial role in various physiological processes including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. AVP acts through three distinct receptor subtypes, i.e.

View Article and Find Full Text PDF

Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Intestinal butyric acid-mediated disruption of gut hormone secretion and lipid metabolism in vasopressin receptor-deficient mice.

Mol Metab

December 2024

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan. Electronic address:

Objectives: Arginine vasopressin (AVP), known as an antidiuretic hormone, is also crucial in metabolic homeostasis. Although AVP receptor-deficient mice exhibit various abnormalities in glucose and lipid metabolism, the mechanism underlying these symptoms remains unclear. This study aimed to explore the involvement of the gut hormones including glucagon-like peptide-1 (GLP-1) and microbiota as essential mediators.

View Article and Find Full Text PDF

The development of a dual V1a/V2 antagonist compound is a complex and challenging task. Conivaptan is up to now the only known V1a/V2 antagonist which was approved for the treatment of euvolemic hyponatremia. Previously, we reported RGH-122, a novel selective V1a antagonist compound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!