In Escherichia coli, the gcvB gene encodes a small non-translated RNA that regulates several genes involved in transport of amino acids and peptides (including sstT, oppA and dppA). Microarray analysis identified cycA as an additional regulatory target of GcvB. The cycA gene encodes a permease for the transport of glycine, d-alanine, d-serine and d-cycloserine. RT-PCR confirmed that GcvB and the Hfq protein negatively regulate cycA mRNA in cells grown in Luria-Bertani broth. In addition, deletion of the gcvB gene resulted in increased sensitivity to d-cycloserine, consistent with increased expression of cycA. A cycA : : lacZ translational fusion confirmed that GcvB negatively regulates cycA expression in Luria-Bertani broth and that Hfq is required for the GcvB effect. GcvB had no effect on cycA : : lacZ expression in glucose minimal medium supplemented with glycine. However, Hfq still negatively regulated the fusion in the absence of GcvB. A set of transcriptional fusions of cycA to lacZ identified a sequence in cycA necessary for regulation by GcvB. Analysis of GcvB identified a region complementary to this region of cycA mRNA. However, mutations predicted to disrupt base-pairing between cycA mRNA and GcvB did not alter expression of cycA : : lacZ. A model for GcvB function in cell physiology is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.023598-0 | DOI Listing |
PLoS One
October 2015
Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
Bradyrhizobium japonicum RegSR regulatory proteins belong to the family of two-component regulatory systems, and orthologs are present in many Proteobacteria where they globally control gene expression mostly in a redox-responsive manner. In this work, we have performed a transcriptional profiling of wild-type and regR mutant cells grown under anoxic denitrifying conditions. The comparative analyses of wild-type and regR strains revealed that almost 620 genes induced in the wild type under denitrifying conditions were regulated (directly or indirectly) by RegR, pointing out the important role of this protein as a global regulator of denitrification.
View Article and Find Full Text PDFISRN Microbiol
June 2013
Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
The Escherichia coli sRNA GcvB regulates several genes involved in transport of amino acids and peptides (sstT, oppA, dppA, and cycA). Two regions of GcvB from nt +124 to +161 and from nt +73 to +82 are complementary with essentially the same region of the cycA mRNA. Transcriptional fusions of cycA to lacZ showed the region of cycA mRNA that can pair with either region of GcvB is necessary for regulation by GcvB.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2009
Estación Experimental del Zaidín, CSIC, Granada, Spain.
Bradyrhizobium japonicum utilizes cytochrome cbb(3) oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c(550), the electron donor to the Cu-containing nitrite reductase, reduces cbb(3) expression. In order to establish the role of c(550) in electron transport to the cbb(3) oxidase, in this work, we have analyzed cbb(3) expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2009
Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
In Escherichia coli, the gcvB gene encodes a small non-translated RNA that regulates several genes involved in transport of amino acids and peptides (including sstT, oppA and dppA). Microarray analysis identified cycA as an additional regulatory target of GcvB. The cycA gene encodes a permease for the transport of glycine, d-alanine, d-serine and d-cycloserine.
View Article and Find Full Text PDFArch Microbiol
June 2004
Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
Cytochrome c(3) of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!