Transgenic mice that overexpress PKCalpha in the epidermis (K5-PKCalpha mice) exhibit acute CXCR2-mediated intraepidermal neutrophilic inflammation and a strong epidermal hyperplasia in response to application of 12-O-tetradecanoylphorbol-13-acetate (TPA). We now show that hyperplasia is independent of infiltrating neutrophils. Furthermore, when K5-PKCalpha mice were initiated with 7,12-dimethylbenz(a)anthracene (DMBA) and promoted with a low dose of TPA, 58% of K5-PKCalpha mice developed skin papillomas that progressed to carcinoma, whereas wild-type mice did not develop tumors. We confirmed that CXCR2 is expressed by keratinocytes and showed that transformation by oncogenic ras (a hallmark of DMBA initiation) or TPA exposure induced all CXCR2 ligands. Ras induction of CXCR2 ligands was mediated by autocrine activation of epidermal growth factor receptor and nuclear factor-kappaB, and potentiated by PKCalpha. Oncogenic ras also induced CXCR2 ligands in keratinocytes genetically ablated for CXCR2. However, ras transformed CXCR2 null keratinocytes formed only small skin tumors in orthotopic skin grafts to CXCR2 intact hosts, whereas transformed wild-type keratinocytes produced large tumors. In vitro, CXCR2 was essential for CXCR2 ligand-stimulated migration of ras-transformed keratinocytes and for ligand activation of the extracellular signal-regulated kinase (ERK) and Akt pathways. Both migration and activation of ERK and Akt were restored by CXCR2 reconstitution of CXCR2 null keratinocytes. Thus, activation of CXCR2 on ras-transformed keratinocytes has both promigratory and protumorigenic functions. The up-regulation of CXCR2 ligands after initiation by oncogenic ras and promotion with TPA in the mouse skin model provides a mechanism to stimulate migration by both autocrine and paracrine pathways and contribute to tumor development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872171 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-08-2490 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!