Background: Internet-based physical activity (PA) and weight management programs have the potential to improve employees' health in large occupational health settings. To be successful, the program must engage a wide range of employees, especially those at risk of weight gain or ill health.
Objective: The aim of the study was to assess the use and nonuse (user attrition) of a Web-based and monitoring device-based PA and weight management program in a range of employees and to determine if engagement with the program was related to the employees' baseline characteristics or measured outcomes.
Methods: Longitudinal observational study of a cohort of employees having access to the MiLife Web-based automated behavior change system. Employees were recruited from manufacturing and office sites in the North West and the South of England. Baseline health data were collected, and participants were given devices to monitor their weight and PA via data upload to the website. Website use, PA, and weight data were collected throughout the 12-week program.
Results: Overall, 12% of employees at the four sites (265/2302) agreed to participate in the program, with 130 men (49%) and 135 women (51%), and of these, 233 went on to start the program. During the program, the dropout rate was 5% (11/233). Of the remaining 222 Web program users, 173 (78%) were using the program at the end of the 12 weeks, with 69% (153/222) continuing after this period. Engagement with the program varied by site but was not significantly different between the office and factory sites. During the first 2 weeks, participants used the website, on average, 6 times per week, suggesting an initial learning period after which the frequency of website log-in was typically 2 visits per week and 7 minutes per visit. Employees who uploaded weight data had a significant reduction in weight (-2.6 kg, SD 3.2, P< .001). The reduction in weight was largest for employees using the program's weight loss mode (-3.4 kg, SD 3.5). Mean PA level recorded throughout the program was 173 minutes (SE 12.8) of moderate/high intensity PA per week. Website interaction time was higher and attrition rates were lower (OR 1.38, P= .03) in those individuals with the greatest weight loss.
Conclusions: This Web-based PA and weight management program showed high levels of engagement across a wide range of employees, including overweight or obese workers, shift workers, and those who do not work with computers. Weight loss was observed at both office and manufacturing sites. The use of monitoring devices to capture and send data to the automated Web-based coaching program may have influenced the high levels of engagement observed in this study. When combined with objective monitoring devices for PA and weight, both use of the website and outcomes can be tracked, allowing the online coaching program to become more personalized to the individual.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2629365 | PMC |
http://dx.doi.org/10.2196/jmir.1108 | DOI Listing |
Viruses
December 2024
The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Center for Advanced Technologies, Tashkent 100174, Uzbekistan.
The development of effective and safe vaccines and their timely delivery to the public play a crucial role in preventing and managing infectious diseases. Many vaccines have been produced and distributed globally to prevent COVID-19 infection. However, establishing effective vaccine development platforms and evaluating their safety and immunogenicity remains critical to increasing health security, especially in developing countries.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Automation, North China Electric Power University, Baoding 071003, China.
To address the difficulty in detecting workers' violation behaviors in electric power construction scenarios, this paper proposes an innovative method that integrates knowledge reasoning and progressive multi-level distillation techniques. First, standards, norms, and guidelines in the field of electric power construction are collected to build a comprehensive knowledge graph, aiming to provide accurate knowledge representation and normative analysis. Then, the knowledge graph is combined with the object-detection model in the form of triplets, where detected objects and their interactions are represented as subject-predicate-object relationship.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Integrating vision-language models into these workflows could address this gap by providing enhanced contextual understanding and enabling advanced queries across temporal and spatial dimensions. Here, we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
The rapid integration of Internet of Things (IoT) systems in various sectors has escalated security risks due to sophisticated multilayer attacks that compromise multiple security layers and lead to significant data loss, personal information theft, financial losses etc. Existing research on multilayer IoT attacks exhibits gaps in real-world applicability, due to reliance on outdated datasets with a limited focus on adaptive, dynamic approaches to address multilayer vulnerabilities. Additionally, the complete reliance on automated processes without integrating human expertise in feature selection and weighting processes may affect the reliability of detection models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!