Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A public compound library with 260,000 compounds was screened virtually by computational docking for novel inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Docking was performed with the program GOLD in conjunction with a high resolution X-ray crystal structure of SERCA. Compounds that were predicted to be active were tested in bioassays. Nineteen novel compounds were discovered that were capable of inhibiting the ATP hydrolysis activity of SERCA at concentrations below 50 microM. Crucial enzyme/inhibitor interactions were identified by analyzing the docking-predicted binding poses of active compounds. Like other SERCA inhibitors, the newly discovered compounds are of considerable medicinal interest because of their potential for cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2008.12.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!