New quinoline NK3 receptor antagonists with CNS activity.

Bioorg Med Chem Lett

Medicinal Chemistry, Neuroscience CEDD GlaxoSmithKline Research & Development, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.

Published: February 2009

Lead optimisation starting from the previously reported selective quinoline NK(3) receptor antagonists talnetant 2 (SB-223412) and 3 (SB-222200) led to the identification of 3-aminoquinoline NK(3) antagonist 10 (GSK172981) with excellent CNS penetration. Investigation of a structurally related series of sulfonamides with reduced lipophilicity led to the discovery of 20 (GSK256471). Both 10 and 20 are high affinity, potent NK(3) receptor antagonists which despite having different degrees of CNS penetration produced excellent NK(3) receptor occupancy in an ex vivo binding study in gerbil cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.12.005DOI Listing

Publication Analysis

Top Keywords

nk3 receptor
16
receptor antagonists
12
quinoline nk3
8
cns penetration
8
receptor
4
antagonists cns
4
cns activity
4
activity lead
4
lead optimisation
4
optimisation starting
4

Similar Publications

Background: The tachykinin substance P (SP) facilitates learning and memory processes after its central administration. Activation of its different receptive sites, neurokinin-1 receptors (NK1Rs), as well as NK2Rs and NK3Rs was shown to influence learning and memory. The basal ganglia have been confirmed to play an important role in the control of memory processes and spatial learning mechanisms, and as part of the basal ganglia, the globus pallidus (GP) may also be involved in this regulation.

View Article and Find Full Text PDF

Elinzanetant is a potent and selective dual neurokin-1 (NK-1) and -3 (NK-3) receptor antagonist that is currently developed for the treatment of women with moderate-to-severe vasomotor symptoms (VMS) associated with menopause. Here, we report the development of a population pharmacokinetic (popPK) model for elinzanetant and its principal metabolites based on an integrated dataset from 366 subjects (including 197 women with VMS) collected in 10 phase I or II studies. The pharmacokinetics of elinzanetant and its metabolites could be well described by the popPK model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region.

View Article and Find Full Text PDF

Genetic Variants in Pathway Lack Association with Premature Ovarian Insufficiency in Mexican Women: A Sequencing-Based Cohort Study.

Genes (Basel)

June 2024

Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, México City C.P. 14080, Mexico.

Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic-pituitary-gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders linked to mutations in the genes related to premature ovarian insufficiency (POI).

View Article and Find Full Text PDF

Background: A GPCR (G protein-coupled receptor) target-based approach was applied to identify antagonists of the arthropod-specific tick kinin receptor. These small molecules were expected to reproduce the detrimental phenotypic effects that had been observed in Rhipicephalus microplus females when the kinin receptor was silenced by RNA interference. Rhipicephalus microplus, the southern cattle tick, cattle fever tick, or Asian blue tick, is the vector of pathogenic microorganisms causing the deadly bovine babesiosis and anaplasmosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!